People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bjørnetun Haugen, Astri
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Temperature-Dependent Ferroelectric Properties and Aging Behavior of Freeze-Cast Bismuth Ferrite-Barium Titanate Ceramicscitations
- 2023Interfacial Engineering of PVDF-TrFE toward Higher Piezoelectric, Ferroelectric, and Dielectric Performance for Sensing and Energy Harvesting Applicationscitations
- 2023Humidity resistance and recovery of sintered sodium potassium niobate-based piezoelectricscitations
- 2022Freeform injection molding of functional ceramics by hybrid additive manufacturingcitations
- 2022Piezoelectric properties of mechanochemically processed 0.67BiFeO3-0.33BaTiO3 ceramicscitations
- 2021Textured, lead-free piezoelectric ceramics with high figure of merit for energy harvestingcitations
- 2021Low-temperature synthesis of bismuth titanate by modified citrate amorphous methodcitations
- 2019Hybrid atmosphere processing of lead-free piezoelectric sodium potassium niobate-based ceramicscitations
- 2018Exploring the Processing of Tubular Chromite- and Zirconia-Based Oxygen Transport Membranescitations
- 2018Exploring the Processing of Tubular Chromite- and Zirconia-Based Oxygen Transport Membranescitations
- 2018Deposition of highly oriented (K,Na)NbO 3 films on flexible metal substratescitations
- 2018Deposition of highly oriented (K,Na)NbO3 films on flexible metal substratescitations
- 2017Oxygen transport properties of tubular Ce 0.9 Gd 0.1 O 1.95 -La 0.6 Sr 0.4 FeO 3−d composite asymmetric oxygen permeation membranes supported on magnesium oxidecitations
- 2017Ceramic processing of tubular, multilayered oxygen transport membranes (Invited)
- 2017Oxygen transport properties of tubular Ce0.9Gd0.1O1.95-La0.6Sr0.4FeO3−d composite asymmetric oxygen permeation membranes supported on magnesium oxidecitations
- 2016Graphite and PMMA as pore formers for thermoplastic extrusion of porous 3Y-TZP oxygen transport membrane supportscitations
- 2016Processing and characterization of multilayers for energy device fabrication (invited)
- 2015Tailoring of porosity of yttria-stabilized zirconia tubes as supports for oxygen separation membranes
- 2015Tailoring of porosity of yttria-stabilized zirconia tubes as supports for oxygen separation membranes
Places of action
Organizations | Location | People |
---|
article
Hybrid atmosphere processing of lead-free piezoelectric sodium potassium niobate-based ceramics
Abstract
K0.5Na0.5NbO3-based ceramics, a promising group of lead-free piezoelectrics, are challenging to sinter dense while avoiding alkali evaporation. This work explores hybrid atmosphere processing, a new approach where reducing atmospheres is used during heating to avoid coarsening from alkali carbonates and hydroxides, and oxidizing atmospheres is used during sintering to avoid alkali evaporation. Discs of Li0.06(K0.52Na0.48)0.94Nb0.71Ta0.29O3 with 0.25 mol% Mn (KNNLTM) were sintered in air, N2, 9% H2 in N2, or 9% H2 in N2 during heating and air during sintering (hybrid atmosphere processing). The highest density was obtained by sintering in 9% H2 in N2, but resulted in high alkali loss and decomposition of the surface, followed by low piezoelectric response. However, with the hybrid H2/air processing it was possible to both avoid surface decomposition and leakage currently associated with alkali evaporation during sintering in H2, and to obtain a denser, more phase-pure and small-grained KNNLTM ceramic with a higher piezoelectric response than obtained by sintering in air or N2.