People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fabbri, Emiliana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Designing bifunctional perovskite catalysts for the oxygen reduction and evolution reactionscitations
- 2024Cobalt-free layered perovskites RBaCuFeO 5+ δ (R = 4f lanthanide) as electrocatalysts for the oxygen evolution reactioncitations
- 2023Operando Investigations of Reversible and Irreversible Transformations of Metal Organic Framework Based Catalysts during the Oxygen Evolution Reaction
- 2023Influence of carbon on the dynamic changes in <scp>C</scp>o oxidation state of Ba0.<scp>5Sr0</scp>.<scp>5Co0</scp>.<scp>8Fe0</scp>.<scp>2O3</scp>‐δ perovskite catalyst during the oxygen reduction and evolution reactionscitations
- 2023Influence of carbon on the dynamic changes in Co oxidation state of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite catalyst during the oxygen reduction and evolution reactionscitations
- 2022Investigating Perovskite Oxide Catalysts As Bifunctional Oxygen Electrodes Using Operando XAS
- 2021Correlation between Oxygen Vacancies and Oxygen Evolution Reaction Activity for a Model Electrode: PrBaCo2O5+δ
- 2021Correlation between Oxygen Vacancies and Oxygen Evolution Reaction Activity for a Model Electrode: PrBaCo<sub>2</sub>O<sub>5+<i>δ</i></sub>citations
- 2020Tuning the Co oxidation state in Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ by flame spray synthesis towards high oxygen evolution reaction activitycitations
- 2019Fe-doping in double perovskite PrBaCo 2(1-x) Fe 2x O 6-δ : insights into structural and electronic efects to enhance oxygen evolution catalyst stabilitycitations
- 2019Fe-Doping in Double Perovskite PrBaCo2(1-x)Fe2xO6-δ: Insights into Structural and Electronic Effects to Enhance Oxygen Evolution Catalyst Stabilitycitations
- 2018Highly Active Nanoperovskite Catalysts for Oxygen Evolution Reaction: Insights into Activity and Stability of Ba0.5Sr0.5Co0.8Fe0.2O2+δ and PrBaCo2O5+δcitations
- 2017Unraveling thermodynamics, stability, and oxygen evolution activity of strontium ruthenium perovskite oxidecitations
- 2017Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splittingcitations
- 2015Probing the bulk ionic conductivity by thin film hetero-epitaxial engineeringcitations
- 2014Catalyzed SnO2 thin films: theoretical and experimental insights into fabrication and electrocatalytic propertiescitations
Places of action
Organizations | Location | People |
---|
article
Fe-Doping in Double Perovskite PrBaCo2(1-x)Fe2xO6-δ: Insights into Structural and Electronic Effects to Enhance Oxygen Evolution Catalyst Stability
Abstract
Perovskite oxides have been gaining attention for its capability to be designed as an ideal electrocatalyst for oxygen evolution reaction (OER). Among promising candidates, the layered double perovskite PrBaCo<sub>2</sub>O<sub>6-δ</sub> (PBC)has been identified as the most active perovskite electrocatalyst for OER in alkaline media. For a single transition metal oxide catalyst, the addition of Fe enhances its electrocatalytic performance towards OER. To understand the role of Fe, herein, Fe is incorporated in PBC in different ratios, which yielded PrBaCo<sub>2(1-x)</sub>Fe<sub>2x</sub>Co<sub>6-δ</sub> (x = 0, 0.2 and 0.5). Fe-doped PBCF's demonstrate enhanced OER activities and stabilities. Operando X-ray absorption spectroscopy (XAS) revealed that Co is more stable in a lower oxidation state upon Fe incorporation by establishing charge stability. Hence, the degradation of Co is inhibited such that the perovskite structure is prolonged under the OER conditions, which allows it to serve as a platform for the oxy(hydroxide) layer formation. Overall, our findings underline synergetic effects of incorporating Fe into Co-based layered double perovskite in achieving a higher activity and stability during oxygen evolution reaction.