People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Grunwaldt, Jan-Dierk
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024Highly loaded bimetallic iron-cobalt catalysts for hydrogen release from ammoniacitations
- 2024Lifecycle of Pd Clusters: Following the Formation and Evolution of Active Pd Clusters on Ceria During CO Oxidation by In Situ/Operando Characterization Techniques
- 2024Unveiling the synergistic effects of pH and Sn content for tuning the catalytic performance of Ni^0/Ni_{x}Sn_{y} intermetallic compounds dispersed on Ce-Zr mixed oxides in the aqueous phase reforming of ethylene glycol
- 2024Pd loading threshold for an efficient noble metal use in Pd/CeO2 methane oxidation catalystscitations
- 2023Green methanol from renewable feeds : Towards scalable catalyst synthesis and improved stability
- 2021Design of bimetallic Au/Cu nanoparticles in ionic liquids: Synthesis and catalytic properties in 5‐(hydroxymethyl)furfural oxidationcitations
- 2020Dynamic structural changes of supported Pd, PdSn, and PdIn nanoparticles during continuous flow high pressure direct H$_{2}$O$_{2}$ synthesiscitations
- 2020Reduction and carburization of iron oxides for Fischer–Tropsch synthesiscitations
- 2020Optimizing Ni-Fe-Ga alloys into Ni$_{2}$FeGa for the hydrogenation of CO$_{2}$ into methanolcitations
- 2020Optimizing Ni-Fe-Ga alloys into Ni 2 FeGa for the hydrogenation of CO 2 into methanolcitations
- 2020Structural dynamics of an iron molybdate catalyst under redox cycling conditions studied with in situ multi edge XAS and XRDcitations
- 2020Microfluidic Crystallization of Surfactant-Free Doped Zinc Sulfide Nanoparticles for Optical Bioimaging Applicationscitations
- 2019Impact of Preparation Method and Hydrothermal Aging on Particle Size Distribution of $Pt/γ-Al_{2}O_{3}$ and Its Performance in CO and NO Oxidationcitations
- 2019Supported Intermetallic PdZn Nanoparticles as Bifunctional Catalysts for the Direct Synthesis of Dimethyl Ether from CO-Rich Synthesis Gascitations
- 2019Chemical Nature of Microfluidically Synthesized AuPd Nanoalloys Supported on TiO2citations
- 2019Mapping the Pore Architecture of Structured Catalyst Monoliths from Nanometer to Centimeter Scale with Electron and X-ray Tomographiescitations
- 2019NH$_{3}$-SCR over V-W/TiO$_{2}$ Investigated by Operando X-ray Absorption and Emission Spectroscopycitations
- 2018Tuning the $mathrm{Pt/CeO_{2}}$ Interface by in Situ Variation of the Pt Particle Sizecitations
- 2018Hydrotreatment of Fast Pyrolysis Bio-oil Fractions Over Nickel-Based Catalystcitations
- 2018Synthesis and Regeneration of Nickel-Based Catalysts for Hydrodeoxygenation of Beech Wood Fast Pyrolysis Bio-Oilcitations
- 2018Synthesis and Regeneration of Nickel-Based Catalysts for Hydrodeoxygenation of Beech Wood Fast Pyrolysis Bio-Oil
- 2017Comparison of the Catalytic Performance and Carbon Monoxide Sensing Behavior of Pd-SnO$_2$ Core@Shell Nanocompositescitations
- 2016Influence of gas atmospheres and ceria on the stability of nanoporous gold studied by environmental electron microscopy and in situ ptychography
- 2016Influence of gas atmospheres and ceria on the stability of nanoporous gold studied by environmental electron microscopy and in situ ptychographycitations
- 2014In situ observation of Cu-Ni alloy nanoparticle formation by X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy: Influence of Cu/Ni ratiocitations
- 2014Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanolcitations
- 2014Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanolcitations
- 2014Flame-made Cu/ZnO/Al2O3 catalyst for dimethyl ether productioncitations
- 2012CO hydrogenation to methanol on Cu–Ni catalystscitations
- 2012CO hydrogenation to methanol on Cu–Ni catalysts:Theory and experimentcitations
- 2011Flame spray synthesis of CoMo/Al2O3 hydrotreating catalystscitations
- 2009Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopycitations
- 2007Combination of flame synthesis and high-throughput experimentation: the preparation of alumina-supported noble metal particles and their application in the partial oxidation of methanecitations
Places of action
Organizations | Location | People |
---|
article
Synthesis and Regeneration of Nickel-Based Catalysts for Hydrodeoxygenation of Beech Wood Fast Pyrolysis Bio-Oil
Abstract
<jats:p>Four nickel-based catalysts are synthesized by wet impregnation and evaluated for the hydrotreatment/hydrodeoxygenation of beech wood fast-pyrolysis bio-oil. Parameters such as elemental analysis, pH value, and water content, as well as the heating value of the upgraded bio-oils are considered for the evaluation of the catalysts’ activity and catalyst reuse in cycles of hydrodeoxygenation after regeneration. The reduction temperature, selectivity and hydrogen consumption are distinct among them, although all catalysts tested produce upgraded bio-oils with reduced oxygen concentration, lower water content and higher energy density. Ni/SiO2, in particular, can remove more than 50% of the oxygen content and reduce the water content by more than 80%, with low coke and gas formation. The evaluation over four consecutive hydrotreatment reactions and catalyst regeneration shows a slightly reduced hydrodeoxygenation activity of Ni/SiO2, mainly due to deactivation caused by sintering and adsorption of poisoning substances, such as sulfur. Following the fourth catalyst reuse, the upgraded bio-oil shows 43% less oxygen in comparison to the feedstock and properties comparable to the upgraded bio-oil obtained with the fresh catalyst. Hence, nickel-based catalysts are promising for improving hardwood fast-pyrolysis bio-oil properties, especially monometallic nickel catalysts supported on silica.</jats:p>