People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Keller, Nicolas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Influence of Impurities in the Chemical Processing Chain of Biomass on the Catalytic Valorisation of Cellulose towards γ-Valerolactonecitations
- 2022TiO2 supported Co catalysts for the hydrogenation of γ-valerolactone to 2methyltetrahydrofuran: influence of the supportcitations
- 2020Understanding the influence of the composition of the Ag- Pd catalysts on the selective formic acid decomposition and subsequent levulinic acid hydrogenationcitations
- 2019Enhanced Production of γ‐Valerolactone with an Internal Source of Hydrogen on Ca‐Modified TiO 2 Supported Ru Catalystscitations
Places of action
Organizations | Location | People |
---|
article
Influence of Impurities in the Chemical Processing Chain of Biomass on the Catalytic Valorisation of Cellulose towards γ-Valerolactone
Abstract
<jats:p>The conversion of lignocellulosic biomass to valuable chemicals such as levulinic acid and γ-valerolactone is a promising approach for achieving a sustainable circular economy. However, the presence of impurities during the stepwise chemical processing chain of the biomass feedstock can significantly impact both the hydrolysis and hydrogenation steps implemented to convert the cellulosic feedstock to levulinic acid and further to γ-valerolactone, respectively. This review article explores the effects of those impurities by classifying them into two groups, namely endogenous and exogenous types, based on whether they originate directly from the raw lignocellulosic biomass or arise during its multi-step chemical processing. Endogenous impurities include heavy metals, alkali metals, alkaline earth metals, proteins, and side products from the downstream treatment of cellulose, while exogenous impurities are introduced during physical pre-treatments such as ball milling or during the hydrolysis step, or they might originate from the reactor setup. The specific catalyst deactivation by carbonaceous species such as humins and coke is considered. The mechanisms of impurity-induced catalyst deactivation and by-product formation are thoroughly discussed. Additionally, strategies for minimizing the detrimental effects of impurities on biomass conversion and enhancing catalytic efficiency and stability are also proposed.</jats:p>