People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Christensen, Benjamin Hjelm
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Thermocatalytic Performance of LaCo1−xNixO3−δ Perovskites in the Degradation of Rhodamine B
Abstract
Perovskite-type LaCo1−xNixO3−δ (x = 0, 0.2, 0.4, 0.6, and 0.8) powders were synthesized by solution combustion synthesis. The crystal structure, morphology, texture, and surface were characterized by X-ray powder diffraction combined with Rietveld refinement, scanning electron microscopy, N2-adsorption, X-ray photoelectron spectroscopy, and zeta-potential analysis. The thermocatalytic properties of the perovskites were investigated by UV–Vis spectroscopy through degradation of rhodamine B in the temperature range 25–60 °C. For the first time, this perovskite system was proven to catalyze the degradation of a water pollutant, as the degradation of rhodamine B occurred within 60 min at 25 °C. It was found that undoped LaCoO3−δ is the fastest to degrade rhodamine B, despite exhibiting the largest energy band gap (1.90 eV) and very small surface area (3.31 m2 g−1). Among the Ni-doped samples, the catalytic performance is balanced between two main contrasting factors, the positive effect of the increase in the surface area (maximum of 12.87 m2 g−1 for 80 mol% Ni) and the negative effect of the Co(III) stabilization in the structure (78% in LaCoO3 and 89–90% in the Ni-containing ones). Thus, the Co(II)/Co(III) redox couple is the key parameter in the dark ambient degradation of rhodamine B using cobaltite perovskites.