Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Murugadoss, Govindhasamy

  • Google
  • 3
  • 9
  • 36

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Rapid Photocatalytic Activity of Crystalline CeO2-CuO-Cu(OH)2 Ternary Nanocomposite10citations
  • 2022Reduced Graphene Oxide–Metal Oxide Nanocomposites (ZrO2 and Y2O3): Fabrication and Characterization for the Photocatalytic Degradation of Picric Acid17citations
  • 2022Nickel-Cadmium-Sulfide Anchored on rGO Nanocomposite for Removal of Textile Industry Dyes9citations

Places of action

Chart of shared publication
Venkatesh, Nachimuthu
1 / 1 shared
Manavalan, Rajesh Kumar
1 / 1 shared
Kannappan, Thiruppathi
2 / 2 shared
Peera, Shaik Gouse
1 / 1 shared
Manivannan, Varadharajan
1 / 1 shared
Kumar, Manavalan Rajesh
1 / 1 shared
Usharani, Balasubramanian
1 / 1 shared
Kandhasamy, Narthana
1 / 1 shared
Kirubaharan, Kamalan
1 / 3 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Venkatesh, Nachimuthu
  • Manavalan, Rajesh Kumar
  • Kannappan, Thiruppathi
  • Peera, Shaik Gouse
  • Manivannan, Varadharajan
  • Kumar, Manavalan Rajesh
  • Usharani, Balasubramanian
  • Kandhasamy, Narthana
  • Kirubaharan, Kamalan
OrganizationsLocationPeople

article

Reduced Graphene Oxide–Metal Oxide Nanocomposites (ZrO2 and Y2O3): Fabrication and Characterization for the Photocatalytic Degradation of Picric Acid

  • Murugadoss, Govindhasamy
  • Peera, Shaik Gouse
  • Manivannan, Varadharajan
  • Kumar, Manavalan Rajesh
  • Usharani, Balasubramanian
Abstract

<jats:p>Herein, reduced graphene-oxide-supported ZrO2 and Y2O3 (rGO-ZrO2 and rGO-Y2O3) nanocomposites were synthesized by hydrothermal method and used as the catalysts for photodegradation of picric acid. The structural and morphological properties of the synthesized samples were characterized by using an X-ray diffractometer (XRD), scanning electron microscope (SEM) with energy dispersive absorption X-ray spectroscopy (EDAX), UV-Vis spectrophotometer, Raman spectrophotometer and Fourier transformation infrared spectrophotometer (FT-IR) techniques. In this work, the wide band gap of the ZrO2 and Y2O3 was successfully reduced by addition of the reduced graphene oxide (rGO) to absorb visible light for photocatalytic application. The performance of as synthesized rGO-ZrO2 and rGO-Y2O3 nanocomposites in the photocatalytic degradation of picric acid were evaluated under UV light irradiation. The photodegradation study using picric acid was analyzed with different energy light sources UV (254, 365 and 395 nm), visible light and sunlight at different pH conditions (pH = 3, 7 and 10). The photocatalytic activity of rGO-ZrO2 and rGO-Y2O3 nanocomposites showed excellent photocatalytic activity under optimum identical conditions with mild variations in pH 3. Compared to rGO-Y2O3, the rGO-ZrO2 nanocomposite showed a better action, with a degradation percentage rate of 100, 99.3, 99.9, 100 and 100% for light conditions of UV-252, 365, 395, visible and sunlight, respectively. The excellent degradation efficiency is attributed to factors such as oxygen-deficient metal oxide phase, high surface area and creation of a greater number of hydroxyl groups.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • surface
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • Oxygen
  • Energy-dispersive X-ray spectroscopy