People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Paris, Elaine Cristina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Magnetic CuFe2O4 Nanoparticles Immobilized on Modified Rice Husk-Derived Zeolite for Chlorogenic Acid Adsorptioncitations
- 2023Modified Silica Nanoparticles from Rice Husk Supported on Polylactic Acid as Adsorptive Membranes for Dye Removalcitations
- 2022Evaluation of Ni-Doped Tricobalt Tetroxide with Reduced Graphene Oxide: Structural, Photocatalysis, and Antibacterial Responsecitations
- 2014Layer-by-layer fabrication of AgCl–PANI hybrid nanocomposite films for electronic tonguescitations
- 2012Structural and optical properties of CaTiO3 perovskite-based materials obtained by microwave-assisted hydrothermal synthesis: An experimental and theoretical insightcitations
Places of action
Organizations | Location | People |
---|
article
Evaluation of Ni-Doped Tricobalt Tetroxide with Reduced Graphene Oxide: Structural, Photocatalysis, and Antibacterial Response
Abstract
<jats:p>Cobalt oxide (Co3O4) nanoparticles were successfully prepared by sol–gel and hydrothermal methods for antibacterial and photocatalytic applications with the addition of 1%, 4% nickel (Ni), and reduced graphene oxide (rGO). The structural and morphological properties of the nanoparticles were obtained by XRD, TEM and FESEM techniques. Cobalt oxide showed typical crystallographic planes to cubic phase and particles with inferior diameter to 30 nm. The Ni-Co3O4 + rGO nanocrystals exhibit a band gap value of 2.0 eV. The bactericidal tests for S. aureus and E. coli revealed that the insertion rGO synthesized by the sol–gel method promoted the antimicrobial activity for both microorganisms. Afterward, the photocatalytic assay for the atrazine contaminant showed significant responses to pesticide removal attributed to the simultaneous adsorption and degradation process. In addition, the sol–gel process found a better response to Ni-Co3O4 in the presence of rGO, indicating a nanocomposite superior synergism.</jats:p>