Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Khalid, Waleed Bin

  • Google
  • 2
  • 13
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Construction of a Well-Defined S-Scheme Heterojunction Based on Bi-ZnFe2O4/S-g-C3N4 Nanocomposite Photocatalyst to Support Photocatalytic Pollutant Degradation Driven by Sunlight13citations
  • 2022Integration of Mn-ZnFe2O4 with S-g-C3N4 for Boosting Spatial Charge Generation and Separation as an Efficient Photocatalyst10citations

Places of action

Chart of shared publication
Alzahrani, Eman
2 / 13 shared
Qamar, Muhammad
1 / 4 shared
Pashameah, Rami Adel
2 / 4 shared
Liu, Guocong
1 / 10 shared
Javed, Dr. Mohsin
2 / 4 shared
Tan, Shaozao
1 / 1 shared
Farouk, Abd-Elaziem
2 / 4 shared
Javed, Kainat
1 / 1 shared
Lu, Ming
1 / 1 shared
Awwad, Nasser S.
1 / 28 shared
Al-Anazy, Murefah Mana
1 / 7 shared
Ibrahium, Hala A.
1 / 27 shared
Qamar, Muhammad Azam
1 / 17 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Alzahrani, Eman
  • Qamar, Muhammad
  • Pashameah, Rami Adel
  • Liu, Guocong
  • Javed, Dr. Mohsin
  • Tan, Shaozao
  • Farouk, Abd-Elaziem
  • Javed, Kainat
  • Lu, Ming
  • Awwad, Nasser S.
  • Al-Anazy, Murefah Mana
  • Ibrahium, Hala A.
  • Qamar, Muhammad Azam
OrganizationsLocationPeople

article

Construction of a Well-Defined S-Scheme Heterojunction Based on Bi-ZnFe2O4/S-g-C3N4 Nanocomposite Photocatalyst to Support Photocatalytic Pollutant Degradation Driven by Sunlight

  • Alzahrani, Eman
  • Qamar, Muhammad
  • Pashameah, Rami Adel
  • Liu, Guocong
  • Khalid, Waleed Bin
  • Javed, Dr. Mohsin
  • Tan, Shaozao
  • Farouk, Abd-Elaziem
  • Javed, Kainat
  • Lu, Ming
Abstract

<jats:p>Currently, organic dyes and other environmental contaminants are focal areas of research, with considerable interest in the production of stable, high-efficiency, and eco-friendly photocatalysts to eliminate these contaminants. In the present work, bismuth-doped zinc ferrite (Bi-ZnFe2O4) nanoparticles (NPs) and bismuth-doped zinc ferrites supported on sulfur-doped graphitic carbon nitride (Bi-ZnFe2O4/S-g-C3N4) (BZFG) photocatalysts were synthesized via a hydrothermal process. SEM, XRD, and FTIR techniques were used to examine the morphological, structural, and bonding characteristics of the synthesized photocatalysts. The photocatalytic competence of the functional BZFG nanocomposites (NCs) was studied against MB under sunlight. The influence of Bi (0.5, 1, 3, 5, 7, 9, and 11 wt.%) doping on the photocatalytic performance of ZnFe2O4 was verified, and the 9%Bi-ZnFe2O4 nanoparticles exhibited the maximum MB degradation. Then, 9%Bi-ZnFe2O4 NPs were homogenized with varying amounts of S-g-C3N4 (10, 30, 50, 60, and 70 wt.%) to further enhance the photocatalytic performance of BZFG NCs. The fabricated Bi-ZnFe2O4/30%S-g-C3N4 (BZFG-30) composite outperformed ZnFe2O4, S-g-C3N4 and other BZFG NCs in terms of photocatalytic performance. The enriched photocatalytic performance of the BZFG NCs might be ascribed to a more efficient transfer and separation of photo-induced charges due to synergic effects at the Bi-ZnFe2O4/S-g-C3N4 interconnection. The proposed modification of ZnFe2O4 using Bi and S-g-C3N4 is effective, inexpensive, and environmentally safe.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • Carbon
  • scanning electron microscopy
  • x-ray diffraction
  • zinc
  • nitride
  • Bismuth