People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Qamar, Muhammad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Emerging environmentally friendly bio-based nanocomposites for the efficient removal of dyes and micropollutants from wastewater by adsorption: a comprehensive reviewcitations
- 2022Construction of a Well-Defined S-Scheme Heterojunction Based on Bi-ZnFe2O4/S-g-C3N4 Nanocomposite Photocatalyst to Support Photocatalytic Pollutant Degradation Driven by Sunlightcitations
- 2021Highly efficient visible light active Cu–ZnO/S-g-C3N4 nanocomposites for efficient photocatalytic degradation of organic pollutantscitations
- 2021The controlled synthesis of g-C3N4/Cd-doped ZnO nanocomposites as potential photocatalysts for the disinfection and degradation of organic pollutants under visible light irradiationcitations
Places of action
Organizations | Location | People |
---|
article
Construction of a Well-Defined S-Scheme Heterojunction Based on Bi-ZnFe2O4/S-g-C3N4 Nanocomposite Photocatalyst to Support Photocatalytic Pollutant Degradation Driven by Sunlight
Abstract
<jats:p>Currently, organic dyes and other environmental contaminants are focal areas of research, with considerable interest in the production of stable, high-efficiency, and eco-friendly photocatalysts to eliminate these contaminants. In the present work, bismuth-doped zinc ferrite (Bi-ZnFe2O4) nanoparticles (NPs) and bismuth-doped zinc ferrites supported on sulfur-doped graphitic carbon nitride (Bi-ZnFe2O4/S-g-C3N4) (BZFG) photocatalysts were synthesized via a hydrothermal process. SEM, XRD, and FTIR techniques were used to examine the morphological, structural, and bonding characteristics of the synthesized photocatalysts. The photocatalytic competence of the functional BZFG nanocomposites (NCs) was studied against MB under sunlight. The influence of Bi (0.5, 1, 3, 5, 7, 9, and 11 wt.%) doping on the photocatalytic performance of ZnFe2O4 was verified, and the 9%Bi-ZnFe2O4 nanoparticles exhibited the maximum MB degradation. Then, 9%Bi-ZnFe2O4 NPs were homogenized with varying amounts of S-g-C3N4 (10, 30, 50, 60, and 70 wt.%) to further enhance the photocatalytic performance of BZFG NCs. The fabricated Bi-ZnFe2O4/30%S-g-C3N4 (BZFG-30) composite outperformed ZnFe2O4, S-g-C3N4 and other BZFG NCs in terms of photocatalytic performance. The enriched photocatalytic performance of the BZFG NCs might be ascribed to a more efficient transfer and separation of photo-induced charges due to synergic effects at the Bi-ZnFe2O4/S-g-C3N4 interconnection. The proposed modification of ZnFe2O4 using Bi and S-g-C3N4 is effective, inexpensive, and environmentally safe.</jats:p>