Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kamran, Urooj

  • Google
  • 3
  • 13
  • 35

Luleå University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Review–Recent Advances in Fire-Suppressing Agents for Mitigating Lithium-Ion Battery Fires3citations
  • 2022Nitrogen and Sulfur Co-Doped Graphene Quantum Dots Anchored TiO2 Nanocomposites for Enhanced Photocatalytic Activity19citations
  • 2022Mango Seed-Derived Hybrid Composites and Sodium Alginate Beads for the Efficient Uptake of 2,4,6-Trichlorophenol from Simulated Wastewater13citations

Places of action

Chart of shared publication
Baig, Mirza Mahmood
1 / 1 shared
Ali, Muqaddas Muhammad
1 / 1 shared
Shahzad, Tahreem
1 / 1 shared
Akhtar, Farid
1 / 27 shared
Jamal, Hasan
1 / 3 shared
Majeed, Fiza
1 / 1 shared
Noman, Muhammad
1 / 4 shared
Park, Mira
1 / 6 shared
Park, Soo-Jin
2 / 4 shared
Rawal, Jishu
1 / 1 shared
Jabeen, Asma
1 / 1 shared
Noreen, Saima
1 / 1 shared
Bhatti, Haq Nawaz
1 / 3 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Baig, Mirza Mahmood
  • Ali, Muqaddas Muhammad
  • Shahzad, Tahreem
  • Akhtar, Farid
  • Jamal, Hasan
  • Majeed, Fiza
  • Noman, Muhammad
  • Park, Mira
  • Park, Soo-Jin
  • Rawal, Jishu
  • Jabeen, Asma
  • Noreen, Saima
  • Bhatti, Haq Nawaz
OrganizationsLocationPeople

article

Mango Seed-Derived Hybrid Composites and Sodium Alginate Beads for the Efficient Uptake of 2,4,6-Trichlorophenol from Simulated Wastewater

  • Kamran, Urooj
  • Jabeen, Asma
  • Noreen, Saima
  • Bhatti, Haq Nawaz
  • Park, Soo-Jin
Abstract

<jats:p>In this study, mango seed shell (MS)-based hybrid composite and composite beads (FeCl3-NaBH4/MS and Na-Alginate/MS) were designed. Batch and column experimental analyses were performed for the uptake of 2,4,6-trichlorophenol (2,4,6-TCP) from wastewater. The physicochemical characteristics of both composites were also examined. From the batch adsorption experiments, the best adsorption capacities of 28.77 mg/g and 27.42 mg/g were observed in basic media (pH 9–10) at 308 K for FeCl3-NaBH4/MS and 333 K for Na-Alginate/MS with 25 mg/L of 2,4,6-TCP concentration for 120 min. The rate of reaction was satisfactorily followed by the pseudo-second-order kinetics. Equilibrium models revealed that the mechanism of reaction followed the Langmuir isotherm. The thermodynamic study also indicated that the nature of the reaction was exothermic and spontaneous with both adsorbents. Desorption experiments were also carried out to investigate the reliability and reusability of the composites. Furthermore, the efficiency of the adsorbents was checked in the presence of different electrolytes and heavy metals. From the batch experimental study, the FeCl3-NaBH4/MS composite proved to be the best adsorbent for the removal of the 2,4,6-TCP pollutant, hence it is further selected for fixed-bed column experimentation. The column study data were analyzed using the BDST and Thomas models and the as-selected FeCl3-NaBH4/MS hybrid composites showed satisfactory results for the fixed-bed adsorption of the 2,4,6-TPC contaminants.</jats:p>

Topics
  • impedance spectroscopy
  • experiment
  • Sodium
  • composite
  • mass spectrometry