People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kamran, Urooj
Luleå University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2024Review–Recent Advances in Fire-Suppressing Agents for Mitigating Lithium-Ion Battery Firescitations
- 2022Nitrogen and Sulfur Co-Doped Graphene Quantum Dots Anchored TiO2 Nanocomposites for Enhanced Photocatalytic Activitycitations
- 2022Mango Seed-Derived Hybrid Composites and Sodium Alginate Beads for the Efficient Uptake of 2,4,6-Trichlorophenol from Simulated Wastewatercitations
Places of action
Organizations | Location | People |
---|
article
Nitrogen and Sulfur Co-Doped Graphene Quantum Dots Anchored TiO2 Nanocomposites for Enhanced Photocatalytic Activity
Abstract
<jats:p>Herein, nitrogen (N) and sulfur (S) co-doped graphene quantum dots (GQDs) using different one-dimensional (1-D) carbon nanomaterials as precursors were synthesized, followed by heterojunction formation with TiO2. GQDs exhibit unlike physiochemical properties due to the disproportionate ratio of N and S heteroatoms and dissimilar reaction parameters. Tailored type-II band gap (Eg) alignment was formed with narrowed Eg value that improves photogenerated electron transfer due to π-conjugation. GQDs-TiO2 nanocomposites exhibit remarkably high methylene blue (MB) degradation up to 99.78% with 2.3–3 times elevated rate constants as compared with TiO2. CNF-GQDs-TiO2 demonstrates the fastest MB degradation (60 min) due to the synergistic effect of nitrogen and sulfur doping, and is considered the most stable photocatalyst among prepared nanocomposites as tested up to three cyclic runs. Whereas, C–O–Ti bonds were not only responsible for nanocomposites strengthening but also provide a charge transfer pathway. Moreover, charge transport behavior, generation of active species, and reaction mechanism were scrutinized via free-radical scavenger analysis.</jats:p>