Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Abudalo, Muna

  • Google
  • 2
  • 5
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Olive Mill Wastewater (OMW) Treatment Using Photocatalyst Media8citations
  • 2021Green Synthesis of Silver Nanoparticles as an Effective Antibiofouling Material for Polyvinylidene Fluoride (PVDF) Ultrafiltration Membrane23citations

Places of action

Chart of shared publication
Al Bawab, Abeer
2 / 2 shared
Abu-Dalo, Duaa
1 / 2 shared
Mallouh, Saida Abu
1 / 1 shared
Odeh, Fadwa
1 / 2 shared
Abu-Zurayk, Rund
1 / 12 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Al Bawab, Abeer
  • Abu-Dalo, Duaa
  • Mallouh, Saida Abu
  • Odeh, Fadwa
  • Abu-Zurayk, Rund
OrganizationsLocationPeople

article

Olive Mill Wastewater (OMW) Treatment Using Photocatalyst Media

  • Abudalo, Muna
  • Al Bawab, Abeer
  • Abu-Dalo, Duaa
Abstract

<jats:p>A new nanophotocatalysts series of M2Zr2O7 (M = Mn, Cu, and Fe) and doped Fe2Zr2O7 systems were prepared via sol-gel using the pechini method, characterized, and tested in photocatalytic degradation of olive mill wastewater (OMW). The photocatalytic degradation of the prepared materials was evaluated by measuring total phenolic compounds (TPCs) using the Folin-Ciocalteu method for variable pH under a commercial LED lamp (45 W). The removal of TPCs was measured at different contact times ranging from 2 h to 6 days. X-ray diffraction (XRD) and transmission electron microscope (TEM) analysis approved the nano size of (5–17 nm) and quasi-spherical morphology of the prepared materials. ICP-OES analysis confirmed the XRD analysis and approved the structure of the prepared materials. Aggregation of the nanomaterials was observed using TEM imaging. Brunauer-Emmett-Teller (BET) analysis measured a 67 m2/g surface area for Fe2Zr2O7. Doping Fe with Mn increased the surface area to 173 m2/g and increased to 187 m2/g with a further increase of the Mn dopant. Increasing the Mn dopant concentration increased both surface area and photocatalytic degradation. The highest degradation of TPCs was observed for Mn2Zr2O7 around 70% at pH 10 and exposure time up to one day.</jats:p>

Topics
  • morphology
  • surface
  • compound
  • x-ray diffraction
  • transmission electron microscopy
  • atomic emission spectroscopy