Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Patterson, Samuel B. H.

  • Google
  • 3
  • 4
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024A Sacrificial Linker in Biodegradable Polyesters for Accelerated Photoinduced Degradation, Monitored by Continuous Atline SEC Analysiscitations
  • 2023Advances in continuous polymer analysis in flow with application towards biopolymers6citations
  • 2021Polymetallic Group 4 Complexes: Catalysts for the Ring Opening Polymerisation of rac-Lactide10citations

Places of action

Chart of shared publication
Arrighi, Valeria
1 / 16 shared
Vilela, Filipe
2 / 4 shared
Wong, Raymond
1 / 1 shared
Barker, Graeme
1 / 1 shared
Chart of publication period
2024
2023
2021

Co-Authors (by relevance)

  • Arrighi, Valeria
  • Vilela, Filipe
  • Wong, Raymond
  • Barker, Graeme
OrganizationsLocationPeople

article

Polymetallic Group 4 Complexes: Catalysts for the Ring Opening Polymerisation of rac-Lactide

  • Patterson, Samuel B. H.
Abstract

<jats:p>Five novel air- and moisture-stable polymetallic Ti and Zr amino acid-derived amine bis(phenolate) (ABP) complexes were synthesised and fully characterised, including X-ray crystallographic studies. The reaction of the ABP proligands with Ti or Zr alkoxides has resulted in the formation of polymetallic aggregates of different nuclearity. The steric bulk on the pendant arm of the ligand was found to play a critical role in establishing the nuclearity of the aggregated complex. Sterically, less-demanding groups, such as H or Me, facilitated the formation of tetrametallic Ti clusters, bridged by carboxylate groups, while increased steric bulk (tBu) led to the formation of binuclear μ-oxo-bridged species. The isolated complexes were employed as catalysts for the ring opening polymerisation (ROP) of rac-lactide. Overall, the Ti catalysts were all active with the smaller, bimetallic Ti aggregates exhibiting relatively faster rates. A monometallic, bis(ABP) Zr complex was found to exert remarkable ROP activity, albeit with limited control over the tacticity and molecular weight distribution of the polymer. A further oxo-bridged Zr cluster was shown to display a previously unprecedented trimetallic structure and achieved a moderate rate in the ROP of rac-lactide.</jats:p>

Topics
  • cluster
  • polymer
  • laser emission spectroscopy
  • molecular weight
  • amine
  • tacticity