Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sonar, Shilpa

  • Google
  • 2
  • 8
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Abatement of Toluene Using a Sequential Adsorption-Catalytic Oxidation Process: Comparative Study of Potential Adsorbent/Catalytic Materials10citations
  • 2020Abatement of Toluene Using a Sequential Adsorption-Catalytic Oxidation Process: Comparative Study of Potential Adsorbent/Catalytic Materials10citations

Places of action

Chart of shared publication
Morent, Rino
1 / 16 shared
Giraudon, Jean-Marc
1 / 12 shared
Kaliya Perumal Veerapandian, Savita
1 / 2 shared
Bitar, Rim
1 / 1 shared
Lamonier, Jean-Francois
1 / 6 shared
De Geyter, Nathalie
1 / 12 shared
Löfberg, Axel
1 / 7 shared
Leus, Karen
1 / 7 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Morent, Rino
  • Giraudon, Jean-Marc
  • Kaliya Perumal Veerapandian, Savita
  • Bitar, Rim
  • Lamonier, Jean-Francois
  • De Geyter, Nathalie
  • Löfberg, Axel
  • Leus, Karen
OrganizationsLocationPeople

article

Abatement of Toluene Using a Sequential Adsorption-Catalytic Oxidation Process: Comparative Study of Potential Adsorbent/Catalytic Materials

  • Sonar, Shilpa
Abstract

<jats:p>A novel strategy for toluene abatement was investigated using a sequential adsorption-regeneration process. Commercial Hopcalite (CuMn2Ox, Purelyst101MD), Ceria nanorods, and UiO-66-SO3H, a metal–organic framework (MOF), were selected for this study. Toluene was first adsorbed on the material and a mild thermal activation was performed afterwards in order to oxidize toluene into CO2 and H2O. The materials were characterized by XRD, N2 adsorption-desorption analysis, H2-TPR and TGA/DSC. The best dynamic toluene adsorption capacity was observed for UiO-66-SO3H due to its hierarchical porosity and high specific surface area. However, in terms of balance between storage and catalytic properties, Hopcalite stands out from others owing to its superior textural/chemical properties promoting irreversible toluene adsorption and outstanding redox properties, allowing a high activity and CO2 selectivity in toluene oxidation. The high conversion of toluene into CO2 which easily desorbs from the surface during heating treatment shows that the sequential adsorption-catalytic thermal oxidation can encompass a classical oxidation process in terms of efficiency, CO2 yield, and energy-cost saving, providing that the bifunctional material displays a good stability in repetitive working conditions.</jats:p>

Topics
  • surface
  • x-ray diffraction
  • thermogravimetry
  • differential scanning calorimetry
  • activation
  • porosity
  • temperature-programmed reduction