People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wood, Joseph
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Anisole hydrodeoxygenation over nickel-based catalystscitations
- 20213D printed re-entrant cavity resonator for complex permittivity measurement of crude oilscitations
- 2020Mild-temperature hydrodeoxygenation of vanillin a typical bio-oil model compound to creosol a potential future biofuelcitations
- 2020Maximizing paraffin to olefin ratio employing simulated nitrogen-rich syngas via Fischer-Tropsch process over Co3O4/SiO2 catalystscitations
- 2020Tetralin and decalin h-donor effect on catalytic upgrading of heavy oil inductively heated with steel ballscitations
- 2020Organocatalysis for versatile polymer degradationcitations
- 2019Poly(lactic acid) degradation into methyl lactate catalyzed by a well-defined Zn(II) complexcitations
- 2019Reaction kinetics of vanillin hydrodeoxygenation in acidic and nonacidic environments using bimetallic PdRh/Al2O3 catalystcitations
- 2019A mechanistic study of Layered-Double Hydroxide (LDH)-derived nickel-enriched mixed oxide (Ni-MMO) in ultradispersed catalytic pyrolysis of heavy oil and related petroleum coke formationcitations
- 2018Catalytic performance of Ni-Cu/Al2O3 for effective syngas production by methanol steam reformingcitations
- 2017In-situ catalytic upgrading of heavy oil using dispersed bionanoparticles supported on gram-positive and gram-negative bacteriacitations
- 2016Selective hydrogenation using palladium bioinorganic catalystcitations
- 2011Improving the interpretation of mercury porosimetry data using computerised X-ray tomography and mean-field DFTcitations
- 2008Experimental and modelling studies of the kinetics of mercury retraction from highly confined geometries during porosimetry in the transport and the quasi-equilibrium regimescitations
- 2006Studies of the entrapment of non-wetting fluid within nanoporous media using a synergistic combination of MRI and micro-computed X-ray tomographycitations
- 2005Minimisation and recycling of spent acid wastes from galvanising plantscitations
Places of action
Organizations | Location | People |
---|
article
Tetralin and decalin h-donor effect on catalytic upgrading of heavy oil inductively heated with steel balls
Abstract
The Toe-to-Heel Air Injection (THAI) combined with catalytic upgrading process in situ (CAPRI) has demonstrated it can simultaneously extract and upgrade heavy oil in situ. This paper reports the investigation of augmenting temperature deficit and suppressing coke formation in the CAPRI section through the incorporation of induction heating and H-donor solvents. An induction-heated catalytic reactor was designed and developed, heated with steel balls in a mixed bed of NiMo/Al<sub>2</sub>O<sub>3</sub> catalyst (66% v/v) to 425 °C temperature, 15 bar pressure and 0.75 h<sup>−1</sup> LHSV (Liquid Hourly Space Velocity). The catalyst surface area, pore volume and pore size distribution were determined by using nitrogen adsorption–desorption, while the location of coke deposits within the microstructure of the pelleted spent catalyst was analyzed with X-Ray nano-Computed Tomography (X-ray nano-CT). Findings showed that induction heating improved the catalyst performance, resulting in a 2.2° American Petroleum Institute (API) gravity increase of the upgraded oil over that achieved with the conventional heating method. The increment in API gravity and viscosity reduction in the upgraded oils with nitrogen gas only, N<sub>2</sub> and H-donor solvents, and hydrogen gas environments can be summarized as follows: decalin > H2 gas >= tetralin > N<sub>2 </sub>gas. Meanwhile, the improvement in naphtha fraction, middle distillate fractions and suppression of coke formation are as follows: decalin > H<sub>2</sub> gas > tetralin > N<sub>2</sub> gas. The X-ray nano-CT of the spent catalyst revealed that the pellet suffers deactivation due to coke deposit at the external surface and pore-mouth blockage, signifying underutilization of the catalyst interior surface area.