People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Villa, Alberto
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Metal-Free Catalytic Conversion of Veratryl and Benzyl Alcohols through Nitrogen-Enriched Carbon Nanotubescitations
- 2022Base‐free oxidative esterification of HMF over AuPd/nNiO‐TiO2 : When alloying effects and metal‐support interactions converge in producing effective and stable catalysts [Base-free Oxidative Esterification of HMF over AuPd/nNiO-TiO2. When Alloying Effects and Metal-support Interactions Converge in Producing Effective and Stable Catalysts]citations
- 2021Disclosing the role of gold on palladium - gold alloyed supported catalysts in formic acid decompositioncitations
- 2021Synthesis of palladium-rhodium bimetallic nanoparticles for formic acid dehydrogenationcitations
- 2020Capping agent effect on Pd-supported nanoparticles in the hydrogenation of furfuralcitations
- 2020DFT-assisted spectroscopic studies on the coordination of small ligands to palladium: from isolated ions to nanoparticlescitations
- 2019Promotion Mechanisms of Au Supported on TiO2 in Thermal- And Photocatalytic Glycerol Conversioncitations
- 2019Cyclic Voltammetry Characterization of Au, Pd, and AuPd Nanoparticles Supported on Different Carbon Nanofiberscitations
- 2019Hybrid Au/CuO Nanoparticles: Effect of Structural Features for Selective Benzyl Alcohol Oxidationcitations
- 2019Promotion Mechanisms of Au Supported on TiO 2 in Thermal- And Photocatalytic Glycerol Conversioncitations
- 2019AuPd-nNiO as an effective catalyst for the base-free oxidation of HMF under mild reaction conditionscitations
- 2019Voltammetric characterization of gold-based bimetallic (AuPt; AuPd; AuAg) nanoparticles
- 2019Promotion mechanisms of Au supported on TiO2 in thermal- and photocatalytic glycerol conversioncitations
- 2018Selective Oxidation of Veratryl Alcohol over Au-Pd/Ce0.62Zr0.38O2 Catalysts Synthesized by Sol-Immobilization: Effect of Au:Pd Molar Ratiocitations
- 2018Catalytic Performances of Au–Pt Nanoparticles on Phosphorous Functionalized Carbon Nanofibers towards HMF Oxidationcitations
- 2018Controlling the incorporation of phosphorus functionalities on carbon nanofibers: effects on the catalytic performance of fructose dehydrationcitations
- 2017Metal nanoclusters stabilized by pH-responsive microgels: Preparation and evaluation of their catalytic potentialcitations
- 2017Metal nanoclusters stabilized by pH-responsive microgels: Preparation and evaluation of their catalytic potentialcitations
- 2016Characterisation of gold catalystscitations
- 2010Pd on carbon nanotubes for liquid phase alcohol oxidationcitations
Places of action
Organizations | Location | People |
---|
article
Metal-Free Catalytic Conversion of Veratryl and Benzyl Alcohols through Nitrogen-Enriched Carbon Nanotubes
Abstract
<jats:p>Nitrogen-rich carbon nanotubes NCNT700 and NCNT800 were prepared using the chemical vapor deposition method (CVD). The catalysts were characterized via high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) analysis. Both the catalysts were found to have an inverted cup-stack-like morphology. The XPS analysis revealed that the catalysts are rich in pyridinic sites with variable amounts of nitrogen on their surface. The NCTN700, with a higher nitrogen content and more pyridinic sites on its surface, was found to be a good catalyst for the oxidation of benzyl and veratryl alcohols into respective aldehydes. It was observed that toluene and 4-methyl veratrole were also produced in this reaction. The amount of toluene produced was as high as 21%, with 99% conversion of benzaldehyde in the presence of NCNTs-700. The mechanistic pathway was revealed through DFT studies, where the unusual product formation of aromatic alkanes such as toluene and 4-methyl veratrole was explained during the reaction. It was astonishing to observe the reduced product in the reaction that proceeds in the forward direction in presence of a peroxide (tert-butyl hydroperoxide, TBHP). During the computational analysis, it was revealed that the reduced product observed in the reaction did not appear to proceed through a direct disproportionation reaction. Rather, the benzyl alcohol (the reactant) used in the reaction may undergo oxidation by releasing the hydrogen radicals. The hydrogen atoms released during the oxidation reaction appear to have been trapped on pyrrolic sites on the surface of catalyst and later transferred to the reactant molecules to produce toluene as a side product.</jats:p>