Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ranogajec, Jonjaua

  • Google
  • 2
  • 9
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Resistance to frost action and microbiological corrosion of novel ceramic compositescitations
  • 2023Bio-Induced Healing of Cement Mortars in Demineralized and Danube Water: CNN Model for Image Classification2citations

Places of action

Chart of shared publication
Vucetic, Snezana
2 / 2 shared
Fidancevska, Emilija
1 / 5 shared
Jovanov, Vojo
1 / 8 shared
Angjusheva, Biljana
1 / 10 shared
Markov, Sinisa
1 / 1 shared
Nešković, Jasmina
1 / 2 shared
Jovanović, Ivana
1 / 1 shared
Trumic, Milan
1 / 1 shared
Markov, Siniša
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Vucetic, Snezana
  • Fidancevska, Emilija
  • Jovanov, Vojo
  • Angjusheva, Biljana
  • Markov, Sinisa
  • Nešković, Jasmina
  • Jovanović, Ivana
  • Trumic, Milan
  • Markov, Siniša
OrganizationsLocationPeople

article

Bio-Induced Healing of Cement Mortars in Demineralized and Danube Water: CNN Model for Image Classification

  • Vucetic, Snezana
  • Ranogajec, Jonjaua
  • Nešković, Jasmina
  • Jovanović, Ivana
  • Trumic, Milan
  • Markov, Siniša
Abstract

<jats:p>Reducing the costs of repairing concrete structures damaged due to the appearance of cracks and reducing the number of people involved in the process of their repair is the subject of a multitude of experimental studies. Special emphasis should be placed on research involving industrial by-products, the disposal of which has a negative environmental impact, as is the case in the research presented in this paper. The basic idea was to prepare a mortar with added granulated blast furnace slag from Smederevo Steel Mill and then treat artificially produced cracks with a Sporosarcina pasteurii DSM 33 suspension under the conditions of both sterile demineralized water and water from the Danube river in order to simulate natural conditions. The results show a bio-stimulated healing efficiency of 32.02% in sterile demineralized water and 42.74% in Danube river water already after 14 days. The SEM images clearly show calcium carbonate crystals as the main compound that has started to fill the crack, and the crystals are much more developed under the Danube river water conditions. As a special type of research, microscopic images of cracks were classified into those with and without the presence of bacterial culture. By applying convolutional neural networks (ResNet 50), the classification success rate was 91.55%.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • scanning electron microscopy
  • crack
  • steel
  • cement
  • Calcium