Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Latapie, Séverine Rosa

  • Google
  • 1
  • 2
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Microstructure of Bio-Based Building Materials: New Insights into the Hysteresis Phenomenon and Its Consequences4citations

Places of action

Chart of shared publication
Sabathier, Vincent
1 / 4 shared
Abou-Chakra, Ariane
1 / 5 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Sabathier, Vincent
  • Abou-Chakra, Ariane
OrganizationsLocationPeople

article

Microstructure of Bio-Based Building Materials: New Insights into the Hysteresis Phenomenon and Its Consequences

  • Latapie, Séverine Rosa
  • Sabathier, Vincent
  • Abou-Chakra, Ariane
Abstract

<jats:p>Considering the current energy environment, both efficient and environmentally friendly solutions have to be developed for building construction. Bio-based building materials offer new perspectives through their insulating and natural humidity regulation capacities. Nevertheless, these materials are as complex as they are promising, and grey areas still remain regarding their behavior. Their water sorption and desorption curves recorded in experimental work demonstrate a hysteresis phenomenon and, although plausible hypotheses have been formulated in the literature, there is currently no consensus on its causes. Furthermore, it is important to emphasize that no reference considers the hydrophilic nature of the resource. Yet, this is a specificity of raw material coming from the plant world. In this context, this paper explores the microstructure and chemical composition of plant aggregates to propose a new explanation for the hysteresis. It is based on recent work demonstrating the existence of differentiated hydrogen bonds between the water sorption and desorption phase in cellulose. Obviously, hysteresis also has an origin at the molecular scale. Lastly, the hypothesis put forward here is supported by the swelling of bio-based materials that has been observed at high relative humidity, and this study aims to identify a link between the mechanics of bio-based materials and their hygroscopic behavior. A swelling/shrinking is macroscopically observed. Combining the fields of chemistry, physics, and civil engineering allowed us to demonstrate that it comes from a molecular-scale hydromechanical coupling. This is a major breakthrough in the understanding of bio-based composites.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • phase
  • composite
  • Hydrogen
  • chemical composition
  • cellulose