Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Meena, Chandan Swaroop

  • Google
  • 4
  • 9
  • 129

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Experimental and RSM-Based Process-Parameters Optimisation for Turning Operation of EN36B Steel28citations
  • 2022Performance Evaluation of Different Coating Materials in Delamination for Micro-Milling Applications on High-Speed Steel Substrate29citations
  • 2022Recent Advancements in Augmentation of Solar Water Heaters Using Nanocomposites with PCM: Past, Present, and Future43citations
  • 2022Experimental Study to Evaluate the Wear Performance of UHMWPE and XLPE Material for Orthopedics Application29citations

Places of action

Chart of shared publication
Prasad, Dr. Arbind
3 / 3 shared
Kant, Laxmi
1 / 1 shared
Kumar, Ramesh
1 / 8 shared
Kumar, Dr. Ashwani
4 / 6 shared
Ghosh, Aritra
2 / 3 shared
Bhoi, Sandeep
3 / 3 shared
Sarkar, Rudra Bubai
2 / 2 shared
Mahto, Bidyanand
2 / 2 shared
Pandey, Chandan
1 / 6 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Prasad, Dr. Arbind
  • Kant, Laxmi
  • Kumar, Ramesh
  • Kumar, Dr. Ashwani
  • Ghosh, Aritra
  • Bhoi, Sandeep
  • Sarkar, Rudra Bubai
  • Mahto, Bidyanand
  • Pandey, Chandan
OrganizationsLocationPeople

article

Recent Advancements in Augmentation of Solar Water Heaters Using Nanocomposites with PCM: Past, Present, and Future

  • Kumar, Dr. Ashwani
  • Meena, Chandan Swaroop
Abstract

<jats:p>Energy consumption in India is massive, and even the quantity used for household tasks is substantial. The majority of the requirement is satisfied by using fossil fuels, which are the traditional methods. Heating water is the most frequent home application. Accordingly, this article examines studies from the previous ten years. The information in this article demonstrates that using renewable energy is the greatest way to cut back on both the use of fossil fuels and carbon emissions while heating water for residential use. Solar, hydroelectric, wind, and biofuels are the most significant renewable sources for improving building efficiency that can be used for an extended period of time. The solar water heater is a common example of how solar energy is being used in homes more frequently. In order to identify key issues and solutions related to employing solar water heaters as an effective water heating application in both commercial and residential buildings, this article compiles research data from earlier studies (2012–2022). The literature survey was carried out using Scopus, a specialized database. Sixty-six dedicated research publications having search keywords plus recently published articles that matched the inclusion criteria were chosen for this review study. The study’s findings show that there is a greater inclination of researchers towards research and development in the field of domestic solar water heaters. The research publications that are being presented are all from the past 10 years (2012–2022) and stress the use of solar energy in increasing building efficiency. The study highlights how flat plate solar collectors with distilled water as the heat transfer fluid and a phase-changing substance as the thermal energy storage could potentially be enhanced. The thermal conductivity of paraffin wax and distilled water was improved by 75% of the researchers by using 0.05 to 0.5% concentrations of Al and Cu oxide nanoparticles, making it useful in solar water heaters. A total of 78% of researchers are interested in domestic water heating applications since they use a lot of energy in both urban and rural settings.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • Carbon
  • inclusion
  • phase
  • thermal conductivity