People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Adnan, Muhammad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Improving the Industrial Efficiency of Recycling Aluminum Alloy Chips Using Friction Stir Extrusion: Thin Wires Production Processcitations
- 2024Microstructural and Mechanical Characteristics Examination of Ultrasonically Welded Joints Using Orthogonal Experimentationcitations
- 2024Correlating Chemical Structure and Charge Carrier Dynamics in Phenanthrocarbazole‐Based Hole Transporting Materials for Efficient Perovskite Solar Cellscitations
- 2024Investigating the influence of deposition techniques and processing conditions on AA2024/SiC FSW joints: Evaluation of microstructural and mechanical propertiescitations
- 2023Role of Aromatic Heterocyclic Core-Based Materials as Donors for Organic and as Hole-Transporting Materials for Perovskites Solar cellscitations
- 2023Strategic Optimization of Annealing Parameters for Efficient and Low Hysteresis Triple Cation Perovskite Solar Cellcitations
- 2022Compressive Behavior of Interlocking Plastic Blocks Structural Elements Having Slendernesscitations
- 2022Aluminum doping effects on interface depletion width of Low temperature processed ZnO Electron Transport Layer-Based Perovskite Solar cellscitations
- 2022Nanoengineering of NiO/MnO2/GO Ternary Composite for Use in High-Energy Storage Asymmetric Supercapacitor and Oxygen Evolution Reaction (OER)citations
- 2019Impact Analysis of Water Quality on the Development of Construction Materialscitations
Places of action
Organizations | Location | People |
---|
article
Compressive Behavior of Interlocking Plastic Blocks Structural Elements Having Slenderness
Abstract
<jats:p>Earthquakes are among of the most harmful and potentially fatal natural disasters. Masonry structures in seismic zones of urban and rural areas around the world pose a threat to human life. Housing that is both affordable and earthquake-resistant in earthquake-prone areas is currently in demand in developing countries. For affordable earthquake-resistant structures in earthquake-prone areas, numerous researchers have studied mortar-free interlocking structures. Plastic blocks are used in order to reduce the mass of the overall structure. To start with, structures under gravity are explored first because more than 95% of its design life, any structure has to withstand gravity. Prototypes of interlocking plastic-block columns, solid walls, and walls with an opening are considered for making the mortar-free structures. In this study, the effect of slenderness on the behavior of interlocking-plastic-block structural elements is investigated under compressive loading by a servo-hydraulic testing machine in the laboratory. The effect of slenderness on the behavior of one and two-block-wide structural elements was investigated in terms of the stress–strain curve, energy absorption, and toughness index under compressive loadings. Correlations between the compressive strength of interlocking-plastic-block structural elements with varying thicknesses were found. Scaled-down prototypes of interlocking-plastic-block structural elements having two-block wide depicted more resistance to compressive loads than one block wide structural elements. The correlations among the one and two block wide interlocking-plastic-block columns, single and double-block-wide solid walls, and single and double-block-width walls with an opening found in this analysis were Pdc = 2.2 Psc, Pdsw = 2.9 Pssw, and Pdwo = 3.5 Pswo. This study can be applied in the future to better understand the detailed behavior of interlocking plastic blocks.</jats:p>