People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Amar, Mouhamadou
IMT Nord Europe
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024A novel approach based on microstructural modeling and a multi-scale model to predicting the mechanical-elastic properties of cement pastecitations
- 2022The Use of Callovo-Oxfordian Argillite as a Raw Material for Portland Cement Clinker Productioncitations
- 2022Flash calcined sediment used in the CEM III cement production and the potential production of hydraulic binder for the road construction – Part I: Characterization of CEM III cements
- 2022Prediction of the Compressive Strength of Waste-Based Concretes Using Artificial Neural Networkcitations
- 2022Effect of flash-calcined sediment substitution in sulfoaluminate cement mortarcitations
- 2022The Pozzolanic Activity of Sediments Treated by the Flash Calcination Methodcitations
- 2022High performance mortar using flash calcined materials
- 2022Designing Efficient Flash-Calcined Sediment-Based Ecobinderscitations
- 2021From dredged sediment to supplementary cementitious material: characterization, treatment, and reusecitations
- 2018Durability of a cementitious matrix based on treated sedimentscitations
Places of action
Organizations | Location | People |
---|
article
The Use of Callovo-Oxfordian Argillite as a Raw Material for Portland Cement Clinker Production
Abstract
<jats:p>Excavated soils and rocks are materials obtained in construction works that could represent an ecological issue if a durable and efficient reuse process is not set. The radioactive waste disposal planned by the French National Radioactive Waste Management Agency will generate large quantities of excavated soil (mainly as Callovo-Oxfordian argillite). The re-use of excavated soils is a recent question. There is a lack in the literature concerning the recycling of such materials. Therefore, this paper aims to investigate the possibility of using Callovo-Oxfordian argillite (COx argillite from the French URL) as a raw material for Portland cement clinker production. COx argillite was first characterized by X-ray diffraction (XRD) and X-ray fluorescence (XRF) then a Portland cement clinker was synthesized at laboratory scale. The produced clinker was characterized to verify the chemical and mineralogical composition. After adding gypsum, the reactivity of the resulting cement was assessed by setting time and isothermal calorimetry measurements. The compressive strength was assessed on standard mortar prisms at 1, 14 and 28 days. The results show that a Portland cement clinker containing 64% C3S, 14% C2S, 10% C4AF, 7% C3A and 1% CaO can be produced when 22.24% of raw meal was substituted by the COx argillite. The setting time and isothermal calorimetry results show that the produced cement shows an equivalent reactivity to conventional ordinary Portland cement. The compressive strength at 28 days is 56 MPa, showing that the produced cement can be considered as CEM I 52.5 N Portland cement.</jats:p>