People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Morais, Simone
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Agaricus bisporus Wild Mushroom Extract as Lectin Source for Engineering a Lactose Photoelectrochemical Biosensorcitations
- 2022(Bio)Sensing Strategies Based on Ionic Liquid-Functionalized Carbon Nanocomposites for Pharmaceuticals: Towards Greener Electrochemical Toolscitations
- 2019Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocompositecitations
- 2019Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocompositecitations
- 2019Third-generation electrochemical biosensor based on nitric oxide reductase immobilized in a multiwalled carbon nanotubes/1-n-butyl-3-methylimidazolium tetrafluoroborate nanocomposite for nitric oxide detectioncitations
- 2018Chitosan-magnetite nanocomposite as a sensing platform to bendiocarb determinationcitations
Places of action
Organizations | Location | People |
---|
article
Agaricus bisporus Wild Mushroom Extract as Lectin Source for Engineering a Lactose Photoelectrochemical Biosensor
Abstract
<jats:p>Agaricus bisporus mushroom biomass contains a lectin, ABL, with remarkable specificity for lactose biorecognition; in this work, this feature was explored to develop a photoelectrochemical biosensor. The high lectin activity found in saline extracts of this macrofungus (640 HU mL−1), even at critical pH values (4–10) and temperatures (20–100 °C), allowed its direct use as an ABL source. Theoretical and experimental evidence revealed favorable electrostatic and biocompatible conditions to immobilize ABL on a poly(methylene blue)/fluorine-doped tin oxide-coated glass platform, giving rise to the ABL/PMB/FTO biosensor. The conducting polymer added further photoactivity to the device, allowing the identification of lectin–carbohydrate interactions with even greater sensitivity. The dose–response curves studied by electrochemical impedance spectroscopy showed a sigmoidal profile that was well-fitted by Hill’s equation, expanding the working dynamic range (15–540 nmol L−1 lactose; 20.2 pmol L−1 detection limit) and avoiding undesirable sample dilution or preconcentration procedures. Under the optimized photoelectrochemical conditions, the ABL/PMB/FTO biosensor showed remarkable signal stability, accuracy, specificity, and selectivity to analyze lactose in commercial food products. This research raises interest in ABL-based biosensors and the added value of the crude Agaricus bisporus extract toward the development of greener and more sustainable biotechnological approaches.</jats:p>