People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Grizmann, Denis
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Exploring the Binding Capacity of Mycelium and Wood-Based Composites for Use in Construction
Abstract
<jats:p>Existing research on mycelium-based materials recognizes the binding capacity of fungal hyphae. Fungal hyphae digest and bond to the surface of the substrate, form entangled networks, and enhance the mechanical strength of mycelium-based composites. This investigation was driven by the results of an ongoing project, where we attempt to provide basic concepts for a broad application of a mycelium and chipped wood composite for building components. Simultaneously, we further explore the binding capacity of mycelium and chipped wood composites with a series of experiments involving different mechanical interlocking patterns. Although the matrix material was analyzed on a micro-scale, the samples were developed on a meso-scale to enhance the bonding surface. The meso-scale allows exploring the potential of the bio-based material for use in novel construction systems. The outcome of this study provides a better understanding of the material and geometrical features of mycelium-based building elements.</jats:p>