People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ristoscu, Carmen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Bioglass and Vitamin D3 Coatings for Titanium Implants: Osseointegration and Corrosion Protectioncitations
- 2017Human plasma fibronectin potentialization of the in vitro and in vivo osteogenic activity of BMPs onto hydroxyapatite coatings with a focus on BMP-6
- 2016Pulsed Laser-Deposited TiO2-based Films: Synthesis, Electronic Structure and Photocatalytic Activitycitations
- 2011Detection of Charge Density Wave Ground State in Granular Thin Films of Blue Bronze K0.3MoO3 by femtosecond spectroscopycitations
- 2003Optical emission spectroscopy and time-of-flight investigations of plasmas generated from AlN targets in cases of pulsed laser deposition with sub-ps and ns ultraviolet laser pulsescitations
- 2001Role of laser pulse duration and gas pressure in deposition of AlN thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Bioglass and Vitamin D3 Coatings for Titanium Implants: Osseointegration and Corrosion Protection
Abstract
<jats:p>The use of MAPLE synthesized thin films based on BG and VD3 for improving the osseointegration and corrosion protection of Ti-like implant surfaces is reported. The distribution of chemical elements and functional groups was shown by FTIR spectrometry; the stoichiometry and chemical functional integrity of thin films after MAPLE deposition was preserved, optimal results being revealed especially for the BG+VD3_025 samples. The morphology and topography were examined by SEM and AFM, and revealed surfaces with many irregularities, favoring a good adhesion of cells. The thin films’ cytotoxicity and biocompatibility were evaluated in vitro at the morphological, biochemical, and molecular level. Following incubation with HDF cells, BG57+VD3_ 025 thin films showed the best degree of biocompatibility, as illustrated by the viability assay values. According to the LDH investigation, all tested samples had higher values compared to the unstimulated cells. The evaluation of cell morphology was performed by fluorescence microscopy following cultivation of HDF cells on the obtained thin films. The cultivation of HDF’s on the thin films did not induce major cellular changes. Cells cultured on the BG57+VD3_025 sample had similar morphology to that of unstimulated control cells. The inflammatory profile of human cells cultured on thin films obtained by MAPLE was analyzed by the ELISA technique. It was observed that the thin films did not change the pro- and anti-inflammatory profile of the HDF cells, the IL-6 and IL-10 levels being similar to those of the control sample. The wettability of the MAPLE thin films was investigated by the sessile drop method. A contact angle of 54.65° was measured for the sample coated with BG57+VD3_025. Electrochemical impedance spectroscopy gave a valuable insight into the electrochemical reactions occurring on the surface.</jats:p>