People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mata, Francisco Javier De La
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2020Copper (II) metallodendrimers combined with pro- apaoptotic siRNAs as a promising strategy against breast cancer cellscitations
- 2019Combination of Ruthenium Dendrimers and Acoustically Propelled Gold Nanowires as a Platform for Active Intracellular Drug Delivery Towards Breast Cancer Therapycitations
- 2019Synthesis and Characterization of FITC Labelled Ruthenium Dendrimer as a Prospective Anticancer Drugcitations
- 2018Ruthenium dendrimers as carriers for anticancer siRNAcitations
Places of action
Organizations | Location | People |
---|
article
Synthesis and Characterization of FITC Labelled Ruthenium Dendrimer as a Prospective Anticancer Drug
Abstract
Metallodendrimers—dendrimers with included metals—are widely investigated as biocompatible equivalents to metal nanoparticles. Applications can be expected in the fields of catalysis, as chemical sensors in molecular recognition and as anticancer drugs. Metallodendrimers can also mimic certain biomolecules, for example, haemoprotein in the case of using a dendrimer with a porphyrin core. In previous papers, we showed the promising anticancer effects of carbosilane ruthenium dendrimers. The present paper is devoted to studying biocompatibility and the cytotoxic effect on normal and cancer cells of carbosilane ruthenium dendrimers labelled with fluorescent probe fluorescein isothiocyanate (FITC). The addition of fluorescent probe allowed tracking the metallodendrimer in both normal and cancer cells. It was found that carbosilane ruthenium dendrimer labelled with FITC in concentration up to 10 µmol/L was more cytotoxic for cancer cells than for normal cells. Thus, FITC labelled carbosilane ruthenium dendrimer is a good candidate for diagnostic imaging and studying anticancer effects of metallodendrimers in cancer therapy.