Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Confalonieri, Marta

  • Google
  • 1
  • 6
  • 9

University of Padua

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Compressive Mechanical Behavior of Partially Oxidized Polyvinyl Alcohol Hydrogels for Cartilage Tissue Repair9citations

Places of action

Chart of shared publication
Pavan, Piero Giovanni
1 / 1 shared
Barbon, Silvia
1 / 2 shared
Porzionato, Andrea
1 / 4 shared
Stocco, Elena
1 / 2 shared
Spadoni, Silvia
1 / 1 shared
Todros, Silvia
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Pavan, Piero Giovanni
  • Barbon, Silvia
  • Porzionato, Andrea
  • Stocco, Elena
  • Spadoni, Silvia
  • Todros, Silvia
OrganizationsLocationPeople

article

Compressive Mechanical Behavior of Partially Oxidized Polyvinyl Alcohol Hydrogels for Cartilage Tissue Repair

  • Pavan, Piero Giovanni
  • Barbon, Silvia
  • Confalonieri, Marta
  • Porzionato, Andrea
  • Stocco, Elena
  • Spadoni, Silvia
  • Todros, Silvia
Abstract

<jats:p>Polyvinyl alcohol (PVA) hydrogels are extensively used as scaffolds for tissue engineering, although their biodegradation properties have not been optimized yet. To overcome this limitation, partially oxidized PVA has been developed by means of different oxidizing agents, obtaining scaffolds with improved biodegradability. The oxidation reaction also allows tuning the mechanical properties, which are essential for effective use in vivo. In this work, the compressive mechanical behavior of native and partially oxidized PVA hydrogels is investigated, to evaluate the effect of different oxidizing agents, i.e., potassium permanganate, bromine, and iodine. For this purpose, PVA hydrogels are tested by means of indentation tests, also considering the time-dependent mechanical response. Indentation results show that the oxidation reduces the compressive stiffness from about 2.3 N/mm for native PVA to 1.1 ÷ 1.4 N/mm for oxidized PVA. During the consolidation, PVA hydrogels exhibit a force reduction of about 40% and this behavior is unaffected by the oxidizing treatment. A poroviscoelastic constitutive model is developed to describe the time-dependent mechanical response, accounting for the viscoelastic polymer matrix properties and the flow of water molecules within the matrix during long-term compression. This model allows to estimate the long-term Young’s modulus of PVA hydrogels in drained conditions (66 kPa for native PVA and 34–42 kPa for oxidized PVA) and can be exploited to evaluate their performances under compressive stress in vivo, as in the case of cartilage tissue engineering.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • Potassium
  • alcohol