People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barreiros, Susana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2022Subcritical Water as a Pre-Treatment of Mixed Microbial Biomass for the Extraction of Polyhydroxyalkanoatescitations
- 2022Subcritical Water as a Pre-Treatment of Mixed Microbial Biomass for the Extraction of Polyhydroxyalkanoatescitations
- 2021Effect of water on the structure and dynamics of choline chloride/glycerol eutectic systemscitations
- 2017Production of Electrospun Fast-Dissolving Drug Delivery Systems with Therapeutic Eutectic Systems Encapsulated in Gelatincitations
- 2017A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solventscitations
- 2017Production of electrospun fast-dissolving drug delivery systems with therapeutic eutectic systems encapsulated in gelatincitations
- 2017Stabilizing Unstable Amorphous Menthol through Inclusion in Mesoporous Silica Hostscitations
- 2016Solubility and Permeability Enhancement of active compounds: Therapeutic Deep Eutectic Systems as New Vehicles for Drug Deliverycitations
- 2016Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systemscitations
- 2015Design of controlled release systems for THEDES - Therapeutic deep eutectic solvents, using supercritical fluid technologycitations
- 2015Design of controlled release systems for THEDES - therapeutic deep eutectic solvents, using supercritical fluid technologycitations
- 2014Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technologycitations
- 2014Ion jelly conductive properties using dicyanamide-based ionic liquidscitations
- 2012Understanding the Ion Jelly Conductivity Mechanismcitations
- 2008Probing the microenvironment of sol-gel entrapped cutinase: the role of added zeolite NaYcitations
Places of action
Organizations | Location | People |
---|
article
Subcritical Water as a Pre-Treatment of Mixed Microbial Biomass for the Extraction of Polyhydroxyalkanoates
Abstract
Polyhydroxyalkanoate (PHA) recovery from microbial cells relies on either solvent extraction (usually using halogenated solvents) and/or digestion of the non-PHA cell mass (NPCM) by the action of chemicals (e.g., hypochlorite) that raise environmental and health hazards. A greener alternative for PHA recovery, subcritical water (SBW), was evaluated as a method for the dissolution of the NPCM of a mixed microbial culture (MMC) biomass. A temperature of 150 degrees C was found as a compromise to reach NPCM solubilization while mostly preventing the degradation of the biopolymer during the procedure. Such conditions yielded a polymer with a purity of 77%. PHA purity was further improved by combining the SBW treatment with hypochlorite digestion, in which a significantly lower hypochlorite concentration (0.1%, v/v) was sufficient to achieve an overall polymer purity of 80%. During the procedure, the biopolymer suffered some depolymerization, as evidenced by the lower molecular weight (M-w) and higher polydispersity of the extracted samples. Although such changes in the biopolymer's molecular mass distribution impact its mechanical properties, impairing its utilization in most conventional plastic uses, the obtained PHA can find use in several applications, for example as additives or for the preparation of graft or block co-polymers, in which low-M-w oligomers are sought.