Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vale, F.

  • Google
  • 3
  • 12
  • 49

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Three-Dimensional Impression of Biomaterials for Alveolar Graft: Scoping Review11citations
  • 2022What Is the Most Effective Technique for Bonding Brackets on Ceramic-A Systematic Review and Meta-Analysis11citations
  • 2022The Biological Effects of 3D Resins Used in Orthodontics: A Systematic Review27citations

Places of action

Chart of shared publication
Carrilho, E.
3 / 16 shared
Marques, F.
3 / 9 shared
Travassos, R.
3 / 3 shared
Paula, Ab
3 / 6 shared
Ribeiro, Mp
1 / 1 shared
Marto, Cm
3 / 12 shared
Pereira, F.
3 / 5 shared
Francisco, I.
3 / 3 shared
Basilio, A.
1 / 1 shared
Nunes, C.
3 / 13 shared
Ribeiro, M.
2 / 6 shared
Oliveiros, B.
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Carrilho, E.
  • Marques, F.
  • Travassos, R.
  • Paula, Ab
  • Ribeiro, Mp
  • Marto, Cm
  • Pereira, F.
  • Francisco, I.
  • Basilio, A.
  • Nunes, C.
  • Ribeiro, M.
  • Oliveiros, B.
OrganizationsLocationPeople

document

The Biological Effects of 3D Resins Used in Orthodontics: A Systematic Review

  • Carrilho, E.
  • Marques, F.
  • Ribeiro, M.
  • Travassos, R.
  • Paula, Ab
  • Marto, Cm
  • Pereira, F.
  • Vale, F.
  • Francisco, I.
  • Nunes, C.
Abstract

Three-dimensional (3D) resin medical-dental devices have been increasingly used in recent years after the emergence of digital technologies. In Orthodontics, therapies with aligners have gained popularity, mainly due to the aggressive promotion policies developed by the industry. However, their systemic effects are largely unknown, with few studies evaluating the systemic toxicity of these materials. The release of bisphenol A and other residual monomers have cytotoxic, genotoxic, and estrogenic effects. This systematic review aims to analyze the release of toxic substances from 3D resins used in Orthodontics and their toxic systemic effects systematically. The PICO question asked was, "Does the use of 3D resins in orthodontic devices induce cytotoxic effects or changes in estrogen levels?". The search was carried out in several databases and according to PRISMA guidelines. In vitro, in vivo, and clinical studies were included. The in vitro studies' risk of bias was assessed using the guidelines for the reporting of pre-clinical studies on dental materials by Faggion Jr. For the in vivo studies, the SYRCLE risk of bias tool was used, and for the clinical studies, the Cochrane tool. A total of 400 articles retrieved from the databases were initially scrutinized. Fourteen articles were included for qualitative analysis. The risk of bias was considered medium to high. Cytotoxic effects or estrogen levels cannot be confirmed based on the limited preliminary evidence given by in vitro studies. Evidence of the release of bisphenol A and other monomers from 3D resin devices, either in vitro or clinical studies, remains ambiguous. The few robust results in the current literature demonstrate the absolute need for further studies, especially given the possible implications for the young patient's fertility, which constitutes one of the largest groups of patients using these orthodontic devices.

Topics
  • resin
  • toxicity