Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Simha Martynková, Gražyna

  • Google
  • 11
  • 28
  • 106

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2023Nanocomposite PVDF Membrane for Battery Separator Prepared via Hot Pressing4citations
  • 2018Graphite an exfoliated and organomodified filler for polymeric nanocompositescitations
  • 2014Cobalt-organovermiculite arrangement and mechanical properties: models and experimentscitations
  • 2014Structural characteristics of cordierite/steatite ceramics sintered from mixtures containing pore-forming organovermiculite12citations
  • 2010Vermiculite filler for polymeric nanocomposites: thermal and dispersion studycitations
  • 2009Preparation and characterization of porous cordierite for potential use in cellular ceramics15citations
  • 2009An effective route to montmorillonite intercalation with imidazole complexes : experiment and theory7citations
  • 2008Silver nanoparticles/montmorillonite composites prepared using nitrating reagent at water and glycerol17citations
  • 2008Fluorescence and structure of methyl red-clay nanocomposites11citations
  • 2007Structural ordering of organovermiculite: Experiments and modeling30citations
  • 2006Identification of carbon forms and other phases in automotive brake composites using multiple analytical techniques10citations

Places of action

Chart of shared publication
Peikertová, Pavlína
1 / 3 shared
Holešová, Sylva
3 / 7 shared
Plesník, Lukáš
1 / 2 shared
Nakonieczny, Damian
1 / 1 shared
Čech Barabaszová, Karla
2 / 3 shared
Pazourková, Lenka
1 / 4 shared
Valášková, Marta
8 / 19 shared
Lafdi, Khalid
1 / 32 shared
Kovár, Filip
1 / 1 shared
Hundáková, Marianna
1 / 3 shared
Ritz, Michal
1 / 2 shared
Tokarský, Jonáš
1 / 8 shared
Zdrálková, Jana
1 / 2 shared
Študentová, Soňa
1 / 1 shared
Barabaszová, Karla
1 / 1 shared
Plevová, Eva
1 / 1 shared
Buchtík, Ondřej
1 / 1 shared
Kulhánková, Lenka
2 / 3 shared
Kukutschová, Jana
1 / 6 shared
Čapková, Pavla
4 / 12 shared
Klemm, Volker
1 / 6 shared
Lešková, Jana
1 / 2 shared
Rafaja, David
1 / 293 shared
Malý, Petr
1 / 1 shared
Matějka, Vlastimil
1 / 14 shared
Weiss, Zdeněk
1 / 6 shared
Filip, Peter
1 / 7 shared
Crelling, John C.
1 / 1 shared
Chart of publication period
2023
2018
2014
2010
2009
2008
2007
2006

Co-Authors (by relevance)

  • Peikertová, Pavlína
  • Holešová, Sylva
  • Plesník, Lukáš
  • Nakonieczny, Damian
  • Čech Barabaszová, Karla
  • Pazourková, Lenka
  • Valášková, Marta
  • Lafdi, Khalid
  • Kovár, Filip
  • Hundáková, Marianna
  • Ritz, Michal
  • Tokarský, Jonáš
  • Zdrálková, Jana
  • Študentová, Soňa
  • Barabaszová, Karla
  • Plevová, Eva
  • Buchtík, Ondřej
  • Kulhánková, Lenka
  • Kukutschová, Jana
  • Čapková, Pavla
  • Klemm, Volker
  • Lešková, Jana
  • Rafaja, David
  • Malý, Petr
  • Matějka, Vlastimil
  • Weiss, Zdeněk
  • Filip, Peter
  • Crelling, John C.
OrganizationsLocationPeople

article

Nanocomposite PVDF Membrane for Battery Separator Prepared via Hot Pressing

  • Peikertová, Pavlína
  • Simha Martynková, Gražyna
  • Holešová, Sylva
  • Plesník, Lukáš
  • Nakonieczny, Damian
  • Čech Barabaszová, Karla
Abstract

<jats:p>Polyvinylidene fluoride (PVDF) is one of the materials most commonly used in membrane separators. The structures of pristine PVDF and PVDF nanocomposite films were processed via hot pressing at 140 °C, 170 °C, and 185 °C at a pressure of 2 tons for 15 min. According to a surface investigation using scanning electron microscopy (SEM), the spherulitic character of the PVDF nanocomposite films was preserved up to a pressing temperatures of 140 °C. The cross-sectional SEM images confirmed that higher pressing temperatures (170 °C) caused the structures to be compacted into monolithic films, and a pressing temperature of 185 °C caused the melting of the PVDF matrix and its recrystallization into thin films (21–29 μm). An average crystallinity value of 51.5% was calculated using differential scanning calorimetry (DSC), and this decreased as the pressing temperature increased. Fourier transform infrared (FTIR) measurements confirmed the presence of a dominant γ phases in the PVDF nanocomposite films, whose nanofillers consisted of vermiculite particles (ZnO_V and ZnO_V_CH) and mixed α + γ phases. The percentage of the electroactive γ phase (approximately 79%) was calculated via a FTIR analysis, and the ratio between the β phase and the α phase was determined from the Raman spectra. A hydrophilic surface with contact angles ranging from 61 to 84° was demonstrated for all the PVDF nanocomposite membranes. The superoleophilic surface was measured using poly(dimethylsiloxane) with contact angles ranging from 4 to 13°, and these angles reached lower values when in contact with sulfur particles.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • surface
  • phase
  • scanning electron microscopy
  • thin film
  • differential scanning calorimetry
  • recrystallization
  • crystallinity
  • hot pressing