Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Holešová, Sylva

  • Google
  • 7
  • 29
  • 110

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Comprehensive study of antimicrobial polycaprolactone/clay nanocomposite films: Preparation, characterization, properties and degradation in simulated body fluid3citations
  • 2023Nanocomposite PVDF Membrane for Battery Separator Prepared via Hot Pressing4citations
  • 2015Carmellose mucoadhesive oral films containing vermiculite/chlorhexidine nanocomposites as innovative biomaterials for treatment of oral infections36citations
  • 2014Antibacterial efficiency of vermiculite/chlorhexidine nanocomposites and results of the in vivo test of harmlessness of vermiculite22citations
  • 2014Antibacterial kaolinite/urea/chlorhexidine nanocomposites: Experiment and molecular modelling38citations
  • 2010Vermiculite filler for polymeric nanocomposites: thermal and dispersion studycitations
  • 2009An effective route to montmorillonite intercalation with imidazole complexes : experiment and theory7citations

Places of action

Chart of shared publication
Kaloč, Václav
1 / 1 shared
Čech Barabaszová, Karla
2 / 3 shared
Joszko, Kamil
1 / 1 shared
Gzik-Zroska, Bożena
1 / 1 shared
Hundáková, Marianna
1 / 3 shared
Kratošová, Gabriela
1 / 3 shared
Peikertová, Pavlína
1 / 3 shared
Simha Martynková, Gražyna
3 / 11 shared
Plesník, Lukáš
1 / 2 shared
Nakonieczny, Damian
1 / 1 shared
Vetchý, David
1 / 1 shared
Landová, Hana
1 / 1 shared
Gajdziok, Jan
1 / 1 shared
Pazdziora, Erich
3 / 3 shared
Štembírek, Jan
2 / 2 shared
Doležel, Petr
1 / 2 shared
Bartošová, Ladislava
1 / 1 shared
Valášková, Marta
3 / 19 shared
Pražanová, Gabriela
1 / 1 shared
Samlíková, Magda
2 / 2 shared
Tokarský, Jonáš
1 / 8 shared
Hlaváč, Dominik
1 / 1 shared
Madejová, Jana
1 / 1 shared
Barabaszová, Karla
1 / 1 shared
Plevová, Eva
1 / 1 shared
Buchtík, Ondřej
1 / 1 shared
Kulhánková, Lenka
1 / 3 shared
Kukutschová, Jana
1 / 6 shared
Čapková, Pavla
1 / 12 shared
Chart of publication period
2024
2023
2015
2014
2010
2009

Co-Authors (by relevance)

  • Kaloč, Václav
  • Čech Barabaszová, Karla
  • Joszko, Kamil
  • Gzik-Zroska, Bożena
  • Hundáková, Marianna
  • Kratošová, Gabriela
  • Peikertová, Pavlína
  • Simha Martynková, Gražyna
  • Plesník, Lukáš
  • Nakonieczny, Damian
  • Vetchý, David
  • Landová, Hana
  • Gajdziok, Jan
  • Pazdziora, Erich
  • Štembírek, Jan
  • Doležel, Petr
  • Bartošová, Ladislava
  • Valášková, Marta
  • Pražanová, Gabriela
  • Samlíková, Magda
  • Tokarský, Jonáš
  • Hlaváč, Dominik
  • Madejová, Jana
  • Barabaszová, Karla
  • Plevová, Eva
  • Buchtík, Ondřej
  • Kulhánková, Lenka
  • Kukutschová, Jana
  • Čapková, Pavla
OrganizationsLocationPeople

article

Nanocomposite PVDF Membrane for Battery Separator Prepared via Hot Pressing

  • Peikertová, Pavlína
  • Simha Martynková, Gražyna
  • Holešová, Sylva
  • Plesník, Lukáš
  • Nakonieczny, Damian
  • Čech Barabaszová, Karla
Abstract

<jats:p>Polyvinylidene fluoride (PVDF) is one of the materials most commonly used in membrane separators. The structures of pristine PVDF and PVDF nanocomposite films were processed via hot pressing at 140 °C, 170 °C, and 185 °C at a pressure of 2 tons for 15 min. According to a surface investigation using scanning electron microscopy (SEM), the spherulitic character of the PVDF nanocomposite films was preserved up to a pressing temperatures of 140 °C. The cross-sectional SEM images confirmed that higher pressing temperatures (170 °C) caused the structures to be compacted into monolithic films, and a pressing temperature of 185 °C caused the melting of the PVDF matrix and its recrystallization into thin films (21–29 μm). An average crystallinity value of 51.5% was calculated using differential scanning calorimetry (DSC), and this decreased as the pressing temperature increased. Fourier transform infrared (FTIR) measurements confirmed the presence of a dominant γ phases in the PVDF nanocomposite films, whose nanofillers consisted of vermiculite particles (ZnO_V and ZnO_V_CH) and mixed α + γ phases. The percentage of the electroactive γ phase (approximately 79%) was calculated via a FTIR analysis, and the ratio between the β phase and the α phase was determined from the Raman spectra. A hydrophilic surface with contact angles ranging from 61 to 84° was demonstrated for all the PVDF nanocomposite membranes. The superoleophilic surface was measured using poly(dimethylsiloxane) with contact angles ranging from 4 to 13°, and these angles reached lower values when in contact with sulfur particles.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • surface
  • phase
  • scanning electron microscopy
  • thin film
  • differential scanning calorimetry
  • recrystallization
  • crystallinity
  • hot pressing