People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fite, Misganu Chewaka
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Symmetric and Asymmetric Supercapacitors of ITO Glass and Film Electrodes Consisting of Carbon Dot and Magnetite
Abstract
<jats:p>To enhance the energy density, hybrid supercapacitors were fabricated, and their electrochemical features were investigated using a two-electrode configuration. By assembling nitrogen-doped graphene/magnetite (NG/Fe3O4) on indium tin oxide-coated (ITO) glass as a cathode and NG/carbon dots(Cdots)/Fe3O4 on ITO glass as an anode, a much higher gravimetric specific capacitance of 252.2 F/g, at a current density of 0.5 A/g, was obtained from this asymmetric supercapacitor compared with that (212.0 F/g) of a symmetric supercapacitor (NG/Cdots/Fe3O4)//(NG/Cdots/Fe3O4). A gravimetric energy density of 90.1 Wh/kg was obtained for an asymmetric ITO glass device at a specific power density of 400.0 W/kg. On the other hand, when an asymmetric two-electrode cell was fabricated with a Cdots/polypyrrole (PPy)/Fe3O4/TEMPO-oxidized cellulose nanofiber (TOCNF)-film electrode and a Cdots/PPy/TOCNF-film electrode, the specific capacitance (107.1 F/g) at a current density of 0.8 A/g was lower than that (456.4 F/g) of a symmetric (Cdots/PPy/Fe3O4/TOCNF)//(Cdots/PPy/Fe3O4/TOCNF)-film cell. Subsequently, a gravimetric energy density of 40.6 Wh/kg was achieved for a symmetric-film device at a specific power density of 320 W/kg. These results suggest that our method offers an efficient approach to developing symmetric and asymmetric devices consisting of hybrid materials for meeting the ever-increasing demands on energy-storage devices.</jats:p>