People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ryan, Kevin
University of Limerick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
- 2023Solid–Electrolyte Interface Formation on Si Nanowires in Li-Ion Batteries: The Impact of Electrolyte Additivescitations
- 2018Copper Sulfide (Cu<i><sub>x</sub></i>S) Nanowire‐in‐Carbon Composites Formed from Direct Sulfurization of the Metal‐Organic Framework HKUST‐1 and Their Use as Li‐Ion Battery Cathodescitations
Places of action
Organizations | Location | People |
---|
article
Solid–Electrolyte Interface Formation on Si Nanowires in Li-Ion Batteries: The Impact of Electrolyte Additives
Abstract
<jats:p>The morphological changes of Si nanowires (Si NWs) cycled in 1:1 ethylene–carbonate (EC)/diethyl–carbonate (DEC) with or without different additives, fluoroethylene carbonate (FEC) or vinylene carbonate (VC), as well as the composition of the deposited solid–electrolyte interphase layer, are investigated by a combination of experimental microscopic and spectroscopic techniques. Scanning electron microscopy and optical spectroscopy highlight that the NW morphology is better preserved in samples cycled in the presence of FEC and VC additives compared to the additive-free electrolyte. However, only the use of FEC is capable of slightly mitigating the amorphization of silicon upon cycling. The solid electrolyte interphase (SEI) formed over the Si NWs cycled in the additive-free electrolyte is richer in organic and inorganic carbonates compared to the SEI grown in the presence of the VC and FEC additives. Furthermore, both additives are able to remarkably limit the degradation of the LiPF6 salt. Overall, the use of the FEC-additive in the carbonate-based electrolyte promotes both morphological and structural resilience of the Si NWs upon cycling thanks to the optimal composition of the SEI layer.</jats:p>