People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Geaney, Hugh
University of Limerick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Lithiophilic interlayer driven 'bottom-up' metal infilling in high current density Li-metal anodescitations
- 2024Strategies to Spatially Guide Li Deposition in Porous Electrodes for High-Performance Lithium Metal Batteries
- 2023Lithiophilic Nanowire Guided Li Deposition in Li Metal Batteriescitations
- 2023Solid–Electrolyte Interface Formation on Si Nanowires in Li-Ion Batteries: The Impact of Electrolyte Additivescitations
- 2023Cu Current Collector with Binder‐Free Lithiophilic Nanowire Coating for High Energy Density Lithium Metal Batteriescitations
- 2021Amorphization driven Na-alloying in Si<sub><i>x</i></sub>Ge<sub>1−<i>x</i></sub> alloy nanowires for Na-ion batteriescitations
- 2021Direct Growth of Si, Ge, and Si–Ge Heterostructure Nanowires Using Electroplated Zn: An Inexpensive Seeding Technique for Li‐Ion Alloying Anodescitations
- 20202D SnSe nanonetworks; growth and evaluation for Li-ion battery applications
- 2019Multimodal surface analyses of chemistry and structure of biominerals in rodent pineal gland concretionscitations
- 2018Copper Sulfide (Cu<i><sub>x</sub></i>S) Nanowire‐in‐Carbon Composites Formed from Direct Sulfurization of the Metal‐Organic Framework HKUST‐1 and Their Use as Li‐Ion Battery Cathodescitations
Places of action
Organizations | Location | People |
---|
article
Solid–Electrolyte Interface Formation on Si Nanowires in Li-Ion Batteries: The Impact of Electrolyte Additives
Abstract
<jats:p>The morphological changes of Si nanowires (Si NWs) cycled in 1:1 ethylene–carbonate (EC)/diethyl–carbonate (DEC) with or without different additives, fluoroethylene carbonate (FEC) or vinylene carbonate (VC), as well as the composition of the deposited solid–electrolyte interphase layer, are investigated by a combination of experimental microscopic and spectroscopic techniques. Scanning electron microscopy and optical spectroscopy highlight that the NW morphology is better preserved in samples cycled in the presence of FEC and VC additives compared to the additive-free electrolyte. However, only the use of FEC is capable of slightly mitigating the amorphization of silicon upon cycling. The solid electrolyte interphase (SEI) formed over the Si NWs cycled in the additive-free electrolyte is richer in organic and inorganic carbonates compared to the SEI grown in the presence of the VC and FEC additives. Furthermore, both additives are able to remarkably limit the degradation of the LiPF6 salt. Overall, the use of the FEC-additive in the carbonate-based electrolyte promotes both morphological and structural resilience of the Si NWs upon cycling thanks to the optimal composition of the SEI layer.</jats:p>