People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhang, Yan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Recyclable 3D‐Printed Aqueous Lithium‐Ion Batterycitations
- 2023Controlling Charge Transport in 2D Conductive MOFs─The Role of Nitrogen-Rich Ligands and Chemical Functionality.citations
- 2022Interface Stability between Na3Zr2Si2PO12 Solid Electrolyte and Sodium Metal Anode for Quasi-Solid-State Sodium Batterycitations
- 2022Ultrasonic Transducers made from Freeze-Cast Porous Piezoceramicscitations
- 2021Piezoelectric tunability and topological insulator transition in a GaN/InN/GaN quantum-well devicecitations
- 2021Patch test–relevant concentrations of metal salts cause localized cytotoxicity, including apoptosis, in skin ex vivocitations
- 2021Correlation between dielectric, mechanical properties and electromechanical performance of functionalized graphene / polyurethane nanocompositescitations
- 2020Self-healing dielectric elastomers for damage-Tolerant actuation and energy harvestingcitations
- 2020Harnessing Plasticity in an Amine-Borane as a Piezoelectric and Pyroelectric Flexible Filmcitations
- 2019Piezoelectric performance of PZT-based materials with aligned porosity::experiment and modellingcitations
- 2019Ice-templated poly(vinylidene fluoride) ferroelectretscitations
- 2019Piezoelectric performance of PZT-based materials with aligned porosity:citations
- 20181-3-Type Composites Based on Ferroelectrics:Electromechanical Coupling, Figures of Merit, and Piezotechnical Energy-Harvesting Applicationscitations
- 2018Understanding the effect of porosity on the polarisation-field response of ferroelectric materialscitations
- 20181-3-Type Composites Based on Ferroelectricscitations
- 2018Ice-templated poly(vinylidene fluoride) ferroelectretscitations
- 2016Tannic Acid and Cholesterol-Dopamine as Building Blocks in Composite Coatings for Substrate-Mediated Drug Deliverycitations
- 2016Tannic Acid and Cholesterol-Dopamine as Building Blocks in Composite Coatings for Substrate-Mediated Drug Deliverycitations
Places of action
Organizations | Location | People |
---|
article
Interface Stability between Na3Zr2Si2PO12 Solid Electrolyte and Sodium Metal Anode for Quasi-Solid-State Sodium Battery
Abstract
<jats:p>Solid electrolytes are renowned for their nonflammable, dendrite-blocking qualities, which also exhibit stability over large potential windows. NASICON-type Na1+xZr2SixP3-xO12 (NZSP) is a well-known solid electrolyte material for sodium metal batteries owing to its elevated room temperature sodium-ion (Na+) conductivity and good electrochemical stability. Nevertheless, the strong electrode–electrolyte interfacial resistance restricts its implementation in sodium metal batteries and remains a significant challenge. In this work, we present an efficacious process to enhance the sodium wettability of Na3Zr2Si2PO12 by sputtering a thin gold (Au) interlayer. Our experimental investigation indicates a substantial reduction in interfacial resistance, from 2708 Ω cm2 to 146 Ω cm2, by employing a fine Au interlayer between the Na metal and the NZSP electrolyte. The symmetrical Na||NZSP||Na with a gold interlayer cell shows a steady Na stripping/plating at a high current density of 320 µA cm−2. A quasi-solid-state battery, with NaFePO4 (NFP) as a cathode, metallic sodium as an anode, and a Au-sputtered NZSP electrolyte with polypropylene (PP) soaked in electrolyte as an intermediate layer on the cathode, exhibited a discharge capacity of 100 mAh g−1 and a ~100% Coulombic efficiency at 50 μA cm−2 after the 50th charge/discharge cycle at room temperature (RT).</jats:p>