People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Calderon, Jorge
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2022Enhancement of Anodically Treated Stainless Steel by NiFeP-Catalyst Electrodeposition as Bifunctional Electrodes for Water Electrolysiscitations
- 2021Preparation of Composite Electrodes for All-Solid-State Batteries Based on Sulfide Electrolytes: An Electrochemical Point of Viewcitations
- 2020New insights on the influence of low frequency pulsed current on the characteristics of PEO coatings formed on AZ31Bcitations
Places of action
Organizations | Location | People |
---|
article
Preparation of Composite Electrodes for All-Solid-State Batteries Based on Sulfide Electrolytes: An Electrochemical Point of View
Abstract
<jats:p>All-solid-state batteries (ASSBs) are a promising response to the need for safety and high energy density of large-scale energy storage systems in challenging applications such as electric vehicles and grid integration. ASSBs based on sulfide solid electrolytes (SEs) have attracted much attention because of their high ionic conductivity and wide electrochemical windows of the sulfide SEs. Here, we study the electrochemical performance of ASSBs using composite electrodes prepared via two processes (simple mixture and solution processes) and varying the ionic conductor additive (80Li2S∙20P2S5 and argyrodite-type Li6PS5Cl). The composite electrodes consist of lithium-silicate-coated LiNi1/3Mn1/3Co1/3O2 (NMC), a sulfide SE, and carbon additives. The charge-transfer resistance at the interface of the solid electrolyte and NMC is the main parameter related to the ASSB’s status. This value decreases when the composite electrodes are prepared via a solution process. The lithium silicate coating and the use of a high-Li-ion additive conductor are also important to reduce the interfacial resistance and achieve high initial capacities (140 mAh g−1).</jats:p>