People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sauer, Markus
TU Wien
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024New insights into the photoassisted anodic reactions of n-type 4H SiC semiconductors
- 2022[Ru(tmphen)<sub>3</sub>]<sub>2</sub>[Fe(CN)<sub>6</sub>] and [Ru(phen)<sub>3</sub>][Fe(CN)<sub>5</sub>(NO)] complexes and formation of a heterostructured RuO<sub>2</sub>–Fe<sub>2</sub>O<sub>3</sub> nanocomposite as an efficient alkaline HER and OER electrocatalystcitations
- 2022[Ru(tmphen)(3)](2)[Fe(CN)(6)] and [Ru(phen)(3)][Fe(CN)(5)(NO)] complexes and formation of a heterostructured RuO2-Fe2O3 nanocomposite as an efficient alkaline HER and OER electrocatalystcitations
- 2019Silicon/Mesoporous Carbon (Si/MC) Derived from Phenolic Resin for High Energy Anode Materials for Li-ion Batteries: Role of HF Etching and Vinylene Carbonate (VC) Additivecitations
- 2016Disentangling Vacancy Oxidation on Metallicity-Sorted Carbon Nanotubescitations
- 2013Hybrid Carbon Nanotube Networks as Efficient Hole Extraction Layers for Organic Photovoltaicscitations
- 2007Fluorescence of single molecules in polymer films: Sensitivity of blinking to local environmentcitations
- 2004Multichromophoric dendrimers as single-photon sources:A single-molecule studycitations
Places of action
Organizations | Location | People |
---|
article
Silicon/Mesoporous Carbon (Si/MC) Derived from Phenolic Resin for High Energy Anode Materials for Li-ion Batteries: Role of HF Etching and Vinylene Carbonate (VC) Additive
Abstract
<jats:p>Silicon/mesoporous carbon (Si/MC) composites with optimum Si content, in which the volumetric energy density would be maximized, while volume changes would be minimized, have been developed. The composites were prepared by dispersing Si nanoparticles in a phenolic resin as a carbon source, subsequent carbonization, and etching with hydrofluoric acid (HF). Special attention was paid to understanding the role of HF etching as post-treatment to provide additional void spaces in the composites. The etching process was shown to reduce the SiO2 native layer on the Si nanoparticles, resulting in increased porosity in comparison to the non-etched composite material. For cell optimization, vinylene carbonate (VC) was employed as an electrolyte additive to build a stable solid electrolyte interphase (SEI) layer on the electrode. The composition of the SEI layer on Si/MC electrodes, cycled with and without VC-containing electrolytes for several cycles, was then comprehensively investigated by using ex-situ XPS. The SEI layers on the electrodes working with VC-containing electrolyte were more stable than those in configurations without VC; this explains why our sample with VC exhibits lower irreversible capacity losses after several cycles. The optimized Si/MC composites exhibit a reversible capacity of ~800 mAhg−1 with an average coulombic efficiency of ~99 % over 400 cycles at C/10.</jats:p>