Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Henao, John

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Evaluating a Fe-Based Metallic Glass Powder as a Novel Negative Electrode Material for Applications in Ni-MH Batteriescitations

Places of action

Chart of shared publication
Flores, Néstor
1 / 1 shared
Campillo, Bernardo
1 / 3 shared
Molina, Arturo
1 / 2 shared
Poblano-Salas, Carlos A.
1 / 1 shared
Magadán, Erick Omar Castañeda
1 / 1 shared
Sotelo, Oscar
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Flores, Néstor
  • Campillo, Bernardo
  • Molina, Arturo
  • Poblano-Salas, Carlos A.
  • Magadán, Erick Omar Castañeda
  • Sotelo, Oscar
OrganizationsLocationPeople

article

Evaluating a Fe-Based Metallic Glass Powder as a Novel Negative Electrode Material for Applications in Ni-MH Batteries

  • Flores, Néstor
  • Campillo, Bernardo
  • Molina, Arturo
  • Henao, John
  • Poblano-Salas, Carlos A.
  • Magadán, Erick Omar Castañeda
  • Sotelo, Oscar
Abstract

<jats:p>Metallic glasses (MGs) are a type of multicomponent non-crystalline metallic alloys obtained by rapid cooling, which possess several physical, mechanical, and chemical advantages against their crystalline counterparts. In this work, an Fe-based MG is explored as a hydrogen storage material, especially, due to the evidence in previous studies about the capability of some amorphous metals to store hydrogen. The evaluation of an Fe-based MG as a novel negative electrode material for nickel/metal hydride (Ni-MH) batteries was carried out through cyclic voltammetry and galvanostatic charge–discharge tests. A conventional LaNi5 electrode was also evaluated for comparative purposes. The electrochemical results obtained by cyclic voltammetry showed the formation of three peaks, which are associated with the formation of Fe oxides/oxyhydroxides and hydroxides. Cycling charge/discharge tests revealed activation of the MG electrode. The highest discharge capacity value was 173.88 mAh/g, but a decay in its capacity was observed after 25 cycles, contrary to the LaNi5, which presents an increment of the discharge capacity for all the current density values evaluated, reached its value maximum at 183 mAh/g. Characterization analyses performed by X-ray diffraction, Scanning Electron Microscopy and Raman Spectroscopy revealed the presence of corrosion products and porosity on the surface of the Fe-based MG electrodes. Overall, the Fe-based MG composition is potentially able to work as a negative electrode material, but degradation and little information about storage mechanisms means that it requires further investigation.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • amorphous
  • nickel
  • corrosion
  • scanning electron microscopy
  • x-ray diffraction
  • glass
  • glass
  • Hydrogen
  • activation
  • current density
  • porosity
  • Raman spectroscopy
  • cyclic voltammetry