Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Glišović, Jasna

  • Google
  • 1
  • 5
  • 47

University of Kragujevac

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Particulate Matter Emission and Air Pollution Reduction by Applying Variable Systems in Tribologically Optimized Diesel Engines for Vehicles in Road Traffic47citations

Places of action

Chart of shared publication
Savić, Slobodan
1 / 5 shared
Milojević, Saša
1 / 3 shared
Bukvic, Milan
1 / 2 shared
Boskovic, Goran
1 / 1 shared
Stojanovic, Blaza
1 / 11 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Savić, Slobodan
  • Milojević, Saša
  • Bukvic, Milan
  • Boskovic, Goran
  • Stojanovic, Blaza
OrganizationsLocationPeople

article

Particulate Matter Emission and Air Pollution Reduction by Applying Variable Systems in Tribologically Optimized Diesel Engines for Vehicles in Road Traffic

  • Savić, Slobodan
  • Milojević, Saša
  • Bukvic, Milan
  • Boskovic, Goran
  • Glišović, Jasna
  • Stojanovic, Blaza
Abstract

<jats:p>Regardless of the increasingly intensive application of vehicles with electric drives, internal combustion engines are still dominant as power units of mobile systems in various sectors of the economy. In order to reduce the emission of exhaust gases and satisfy legal regulations, as a temporary solution, hybrid drives with optimized internal combustion engines and their associated systems are increasingly being used. Application of the variable compression ratio and diesel fuel injection timing, as well as the tribological optimization of parts, contribute to the reduction in fuel consumption, partly due to the reduction in mechanical losses, which, according to test results, also results in the reduction in emissions. This manuscript presents the results of diesel engine testing on a test bench in laboratory conditions at different operating modes (compression ratio, fuel injection timing, engine speed, and load), which were processed using a zero-dimensional model of the combustion process. The test results should contribute to the optimization of the combustion process from the aspect of minimal particulate matter emission. As a special contribution, the results of tribological tests of materials for strengthening the sliding surface of the aluminum alloy piston and cylinder of the internal combustion engine and air compressors, which were obtained using a tribometer, are presented. In this way, tribological optimization should also contribute to the reduction in particulate matter emissions due to the reduction in fuel consumption, and thus emissions due to the reduction in friction, as well as the recorded reduction in the wear of materials that are in sliding contact. In this way, it contributes to the reduction in harmful gases in the air.</jats:p>

Topics
  • surface
  • aluminium
  • combustion