People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Olofsson, Ulf
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Characterization of ultrafine particles from hardfacing coated brake rotorscitations
- 2023Characterization of ultrafine particles from hardfacing coated brake rotorscitations
- 2022Simulation of thermal and mechanical performance of laser cladded disc brake rotorscitations
- 2021Laser Cladding Treatment for Refurbishing Disc Brake Rotorscitations
- 2021Tribology and airborne particle emission of laser-cladded fe-based coatings versus non-asbestos organic and low-metallic brake materialscitations
- 2020A study of the effect of brake pad scorching on tribology and airborne particle emissionscitations
- 2020A study of the effect of brake pad scorching on tribology and airborne particle emissionscitations
- 2020Airborne wear particle emissions produced during the dyno bench tests with a slag containing semi-metallic brake padscitations
- 2020Grey Cast Iron Brake Discs Laser Cladded with Nickel-Tungsten Carbide—Friction, Wear and Airborne Wear Particle Emissioncitations
- 2020Influence of the DIN 3962 Quality Class on the Efficiency in Honed Powder Metal and Wrought Steel Gearscitations
- 2019A pin-on-disc study on the tribology of cast iron, sinter and composite railway brake blocks at low temperaturescitations
- 2019A PIN-ON-DISC STUDY ON THE FRICTION, WEAR AND AIRBORNE PARTICLE EMISSION FROM RECYCLED BRAKE PAD MATERIAL
- 2018A friction, wear and emission tribometer study of non-asbestos organic pins sliding against alsic mmc discscitations
- 2018On the influence of car brake system parameters on particulate matter emissionscitations
- 2017Pin-on-Disc Study of Tribological Performance of Standard and Sintered Gear Materials Treated with Triboconditioning Process: Pre-treatment by Pressure-induced Tribo-film formationcitations
- 2016A study of the efficiency of spur gears made of powder metallurgy materials - ground versus super-finished surfacescitations
- 2015A pin-on-disc study of the tribology characteristics of sintered versus standard steel gear materialscitations
- 2010Mapping Railway Wheel Material Wear Mechanisms and Transitionscitations
- 2010A pin-on-disc simulation of airborne wear particles from disc brakescitations
- 2010Size, shape, and elemental composition of airborne wear particles from disc brake materialscitations
- 2008On Airborne Wear Particles Emissions ofCommercial Disc Brake Materials– A Pin on Disc Simulation
- 2008Airborne Wear Particles Emissions fromCommercial Disc Brake Materials– Passenger Car Field Test
Places of action
Organizations | Location | People |
---|
article
A study of the effect of brake pad scorching on tribology and airborne particle emissions
Abstract
Non-exhaust wear emissions from disc brakes affect the air quality in cities throughout the world. These emissions come from the wear of the contact surfaces of both the pads and disc. The tribological and emissions performance of disc brakes strongly depend on the contact surface characteristics of the pads and discs. The surfaces of conventional pads are scorched by heating it to several hundred degrees to make the resin carbonize down to a few millimetres deep into the pad. This is done to have a shorter run-in period for new pads. It is not known how scorching will affect the amount of airborne particle emissions. Therefore, the aim of the present study is to investigate how pad scorching influence the airborne particle emissions. This is done by comparing the pin-on-disc tribometer and inertia dyno bench emission results from a Cu-free friction material run against a grey cast iron disc. Three types of modified friction material surfaces have been tested: scorched, extra-scorched and rectified. The results show that the level of scorching strongly affects the airborne particle emissions in the initial phase of the tests. Even if the scorched layer is removed (rectified) before testing, it seems like it still has a measurable influence on the airborne particle emissions. The results from the tribometer tests are qualitatively in line with the inertia dyno bench test for about the first forty brake events; thereafter, the airborne particle emissions are higher for the scorched pads. It can be concluded that it seems that the level of scorching has an adverse influence on both the tribological performance and level of particle emissions.