Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sabani, Erroumayssae

  • Google
  • 2
  • 10
  • 36

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Piezoelectric and Electromechanical Characteristics of Porous Poly(Ethylene-co-Vinyl Acetate) Copolymer Films for Smart Sensors and Mechanical Energy Harvesting Applications18citations
  • 2021Piezoelectric and Electromechanical Characteristics of Porous Poly(Ethylene-co-Vinyl Acetate) Copolymer Films for Smart Sensors and Mechanical Energy Harvesting Applications18citations

Places of action

Chart of shared publication
Samuel, Cédric
1 / 10 shared
Ennawaoui, Chouaib
1 / 4 shared
Rjafallah, Abdelkader
1 / 4 shared
Ballouti, Abdessamad El
1 / 1 shared
Azim, Azeddine
1 / 1 shared
Laadissi, El Mehdi
1 / 3 shared
Loualid, El Mehdi
1 / 1 shared
Najihi, Ikrame
1 / 1 shared
Rguiti, Mohamed
1 / 39 shared
Hajjaji, Abdelowahed
1 / 12 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Samuel, Cédric
  • Ennawaoui, Chouaib
  • Rjafallah, Abdelkader
  • Ballouti, Abdessamad El
  • Azim, Azeddine
  • Laadissi, El Mehdi
  • Loualid, El Mehdi
  • Najihi, Ikrame
  • Rguiti, Mohamed
  • Hajjaji, Abdelowahed
OrganizationsLocationPeople

article

Piezoelectric and Electromechanical Characteristics of Porous Poly(Ethylene-co-Vinyl Acetate) Copolymer Films for Smart Sensors and Mechanical Energy Harvesting Applications

  • Sabani, Erroumayssae
Abstract

<jats:p>This paper investigates energy harvesting performances of porous piezoelectric polymer films to collect electrical energy from vibrations and power various sensors. The influence of void content on the elastic matrix, dielectric, electrical, and mechanical properties of porous piezoelectric polymer films produced from available commercial poly(ethylene-co-vinyl acetate) using an industrially applicable melt-state extrusion method (EVA) were examined and discussed. Electrical and mechanical characterization showed an increase in the harvested current and a decrease in Young’s modulus with the increasing ratio of voids. Thermal analysis revealed a decrease in piezoelectric constant of the porous materials. The authors present a mathematical model that is able to predict harvested current as a function of matrix characteristics, mechanical excitation and porosity percentage. The output current is directly proportional to the porosity percentage. The harvested power significantly increases with increasing strain or porosity, achieving a power value up to 0.23, 1.55, and 3.87 mW/m3 for three EVA compositions: EVA 0%, EVA 37% and EVA 65%, respectively. In conclusion, porous piezoelectric EVA films has great potential from an energy density viewpoint and could represent interesting candidates for energy harvesting applications. Our work contributes to the development of smart materials, with potential uses as innovative harvester systems of energy generated by different vibration sources such as roads, machines and oceans.</jats:p>

Topics
  • porous
  • density
  • impedance spectroscopy
  • energy density
  • melt
  • extrusion
  • thermal analysis
  • void
  • porosity
  • copolymer