Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Azzini, Paolo

  • Google
  • 1
  • 4
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Fabrication of High-Aspect-Ratio Cylindrical Micro-Structures Based on Electroactive Ionogel/Gold Nanocomposite6citations

Places of action

Chart of shared publication
Migliorini, Lorenzo
1 / 5 shared
Milani, Paolo
1 / 19 shared
Santaniello, Tommaso
1 / 7 shared
Milana, Edoardo
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Migliorini, Lorenzo
  • Milani, Paolo
  • Santaniello, Tommaso
  • Milana, Edoardo
OrganizationsLocationPeople

article

Fabrication of High-Aspect-Ratio Cylindrical Micro-Structures Based on Electroactive Ionogel/Gold Nanocomposite

  • Migliorini, Lorenzo
  • Azzini, Paolo
  • Milani, Paolo
  • Santaniello, Tommaso
  • Milana, Edoardo
Abstract

We present a fabrication process to realize 3D high-aspect-ratio cylindrical micro-structures of soft ionogel/gold nanocomposites by combining replica molding and Supersonic Cluster Beam Deposition (SCBD). Cylinders’ metallic masters (0.5 mm in diameter) are used to fabricate polydimethylsiloxane (PDMS) molds, where the ionogel is casted and UV cured. The replicated ionogel cylinders (aspect ratio > 20) are subsequently metallized through SCBD to integrate nanostructured gold electrodes (150 nm thick) into the polymer. Nanocomposite thin films are characterized in terms of electrochemical properties, exhibiting large double layer capacitance (24 μF/cm2) and suitable ionic conductivity (0.05 mS/cm) for charge transport across the network. Preliminary actuation tests show that the nanocomposite is able to respond to low intensity electric fields (applied voltage from 2.5 V to 5 V), with potential applications for the development of artificial smart micro-structures with motility behavior inspired by that of natural ciliate systems.

Topics
  • Deposition
  • nanocomposite
  • impedance spectroscopy
  • cluster
  • polymer
  • thin film
  • gold
  • mass spectrometry