People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kotowski, Jakub
University of Warsaw
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2024Using 3D printing technology to monitor damage in GFRPs
- 2024In‐depth study of a speiss/matte sample from Castillo de Huarmey, North Coast of Peru, and its implications for the pre‐Columbian production of arsenic bronze in the Central Andes
- 2019Predicting Compressive Strength of Cement-Stabilized Rammed Earth Based on SEM Images Using Computer Vision and Deep Learningcitations
Places of action
Organizations | Location | People |
---|
article
Predicting Compressive Strength of Cement-Stabilized Rammed Earth Based on SEM Images Using Computer Vision and Deep Learning
Abstract
Predicting the compressive strength of cement-stabilized rammed earth (CSRE) using current testing machines is time-consuming and costly and may harm the environment due to the samples’ waste. This paper presents an automatic method using computer vision and deep learning to solve the problem. For this purpose, a deep convolutional neural network (DCNN) model is proposed, which was evaluated on a new in-house scanning electron microscope (SEM) image database containing 4284 images of materials with different compressive strengths. The experimental results show reasonable prediction results compared to other traditional methods, achieving 84% prediction accuracy and a small (1.5) oot Mean Square Error (RMSE). This indicates that the proposed method (with some enhancements) can be used in practice for predicting the compressive strength of CSRE samples.