People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fytas, George
Max Planck Institute for Polymer Research
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023Size-dependent nanoscale soldering of polystyrene colloidal crystals by supercritical fluidscitations
- 2022Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocompositescitations
- 2022Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocompositescitations
- 2021Internal Microstructure Dictates Interactions of Polymer-grafted Nanoparticles in Solutioncitations
- 2021Optomechanic Coupling in Ag Polymer Nanocomposite Filmscitations
- 2021Direct visualization and characterization of interfacially adsorbed polymer atop nanoparticles and within nanocompositescitations
- 2020Harnessing polymer grafting to control the shape of plasmonic nanoparticlescitations
- 2020Ultrathin polydopamine films with phospholipid nanodiscs containing a glycophorin a domaincitations
- 2020Frequency-domain study of nonthermal gigahertz phonons reveals Fano coupling to charge carrierscitations
- 2020Ultrathin Polydopamine Films with Phospholipid Nanodiscs Containing a Glycophorin A Domaincitations
- 2018Propagation of elastic waves in a one-dimensional high aspect ratio nanoridge phononic crystal phononic crystalcitations
- 2018Robustness of elastic properties in polymer nanocomposite films examined over the full volume fraction rangecitations
- 2018Well-defined metal-polymer nanocomposites: The interplay of structure, thermoplasmonics, and elastic mechanical propertiescitations
- 2018Direct observation of polymer surface mobility via nanoparticle vibrationscitations
- 2018Propagation of Elastic Waves in a One-Dimensional High Aspect Ratio Nanoridge Phononic Crystalcitations
- 2018Well-defined metal-polymer nanocomposites : the interplay of structure, thermoplasmonics, and elastic mechanical propertiescitations
- 2018Ultrathin Shell Layers Dramatically Influence Polymer Nanoparticle Surface Mobilitycitations
- 2014Surface asymmetry of coated spherical nanoparticlescitations
- 2011Resonance enhanced dynamic light scatteringcitations
Places of action
Organizations | Location | People |
---|
article
Propagation of Elastic Waves in a One-Dimensional High Aspect Ratio Nanoridge Phononic Crystal
Abstract
<jats:p>We investigate the propagation of elastic waves in a one-dimensional (1D) phononic crystal constituted by high aspect ratio epoxy nanoridges that have been deposited at the surface of a glass substrate. With the help of the finite element method (FEM), we calculate the dispersion curves of the modes localized at the surface for propagation both parallel and perpendicular to the nanoridges. When the direction of the wave is parallel to the nanoridges, we find that the vibrational states coincide with the Lamb modes of an infinite plate that correspond to one nanoridge. When the direction of wave propagation is perpendicular to the 1D nanoridges, the localized modes inside the nanoridges give rise to flat branches in the band structure that interact with the surface Rayleigh mode, and possibly open narrow band gaps. Filling the nanoridge structure with a viscous liquid produces new modes that propagate along the 1D finite height multilayer array.</jats:p>