People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schuschnigg, Stephan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024Simulation of the Melting Region in Additive Manufacturing Material Extrusion Dies for Highly Filled Feedstocks
- 2024Comparative analysis of binder systems in copper feedstocks for metal extrusion additive manufacturing and metal injection mouldingcitations
- 2024Production of Permanent Magnets from Recycled NdFeB Powder with Powder Extrusion Mouldingcitations
- 2024Binder System Composition on the Rheological and Magnetic Properties of Nd-Fe-B Feedstocks for Metal Injection Moldingcitations
- 2024Rapid tooling for rubber extrusion molding by digital light processing 3D printing with dual curable vitrimerscitations
- 2024Additive Manufacturing Material Extrusion @ Institute of Polymer Processing
- 2023Susmagpro
- 2023Debinding And Sintering Strategies For Fused Filament Fabrication Of Aluminium Alloyscitations
- 2023Effects of Different Polypropylene (PP)-Backbones in Aluminium Feedstock for Fused Filament Fabrication (FFF)citations
- 2023Validation Of Alternative Binders for Pellet Extrusion 3D Printing Of 316L Steels
- 2022Research Progress on Low-Pressure Powder Injection Moldingcitations
- 2022In-situ alignment of 3D printed anisotropic hard magnetscitations
- 2021Thermal conductive, electrically insulating polymer compounds using material extrusion additive manufacturing for electronic parts
- 2021Powder content in powder extrusion moulding of tool steelcitations
- 2020Additive Fertigung metallischer und keramischer Bauteile
- 2019Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet componentscitations
- 2019Filament-extrusion 3D printing of hardmetal and cermet parts
- 2018Feedstocks for the Shaping-Debinding-Sintering Process of Multi Material Components
- 2018Adhesion of standard filament materials to different build platforms in material extrusion additive manufacturing
- 2018Material Extrusion Additive Manufacturing for Photocatalytic Applications
- 2018Highly-filled Polymers for Fused Filament Fabrication
- 2018Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymerscitations
- 2018Polypropylene Filled With Glass Spheres in Extrusion‐Based Additive Manufacturingcitations
- 2017Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabricationcitations
- 2016Dissipative particle dynamics simulations of orientation of layered silicate particles embedded in polymer melts under shear flowscitations
- 2016Structure of Polypropylene Macromolecules in the Vicinity of Fe2O3 Surface
- 2016Effect of Particle Size on the Properties of Highly-Filled Polymers for Fused Filament Fabrication
- 2016Bonding Forces in Fused Filament Fabrication
- 2016Coupled Orientation and Stretching of Chains in Mesoscale Models of Polydisperse Linear Polymers in Startup of Steady Shear Flow Simulationscitations
- 2016Haftungsvorhersage und Haftungsverbesserung im Fused Filament Fabrication (FFF) Prozess
- 2016Special Materials and Technologies for Fused Filament Fabrication
- 2016Properties for PIM Feedstocks Used in Fused Filament Fabrication
- 2016Optimization of twin screw extrusion using CFD for polymer/nanoclay composites
- 2015Optimization of Twin Screw Extrusion using CFD for Polymer/Nanoclay Composites
Places of action
Organizations | Location | People |
---|
article
Binder System Composition on the Rheological and Magnetic Properties of Nd-Fe-B Feedstocks for Metal Injection Molding
Abstract
The applications of Nd-Fe-B-based magnets are experiencing significant diversification to achieve efficiency and miniaturization in different technologies. Metal injection molding (MIM) provides new opportunities to manufacture Nd-Fe-B magnets with high geometrical complexity efficiently. In this study, the impacts of the binder system composition and powder loading on the rheological behavior, contamination, and magnetic properties of the Nd-Fe-B MIM parts were investigated. A high-pressure capillary rheometer was used to measure the apparent viscosity and pressure drops for feedstocks with different binder formulations and powder contents. Also, oxygen and carbon contamination, density, and magnetic properties were measured for different feedstock formulations and powder loadings. From the rheological, density, and magnetic properties points of view, the binder system consisting of 45 vol.% LLDPE as backbone was selected as the optimum formulation. The findings indicated that the sample with this binder system and 55 vol.% powder content had a high density (6.83 g/cm3), remanence (0.591 T), and coercivity (744.6 kA/m) compared to other binder compositions. By using 58 vol.% powder loading, the values of density (7.54 g/cm3), remanence (0.618 T), and carbon residue (982 ppm) improved, and a suitable rheological behavior was still observed. Thus, a suitable feedstock formulation was developed.