Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kowalczyk, Jakub

  • Google
  • 3
  • 6
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Study of the Kinetics of Adhesive Bond Formation Using the Ultrasonic Method3citations
  • 2022Quality Tests of Hybrid Joint–Clinching and Adhesive—Case Study9citations
  • 2022Adhesive Joints of Additively Manufactured Adherends: Ultrasonic Evaluation of Adhesion Strength7citations

Places of action

Chart of shared publication
Jósko, Marian
1 / 1 shared
Nowak, Michał
3 / 4 shared
Sędłak, Kamil
3 / 3 shared
Matysiak, Waldemar
1 / 1 shared
Sawczuk, Wojciech
1 / 1 shared
Ulbrich, Dariusz
1 / 2 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Jósko, Marian
  • Nowak, Michał
  • Sędłak, Kamil
  • Matysiak, Waldemar
  • Sawczuk, Wojciech
  • Ulbrich, Dariusz
OrganizationsLocationPeople

article

Study of the Kinetics of Adhesive Bond Formation Using the Ultrasonic Method

  • Kowalczyk, Jakub
  • Jósko, Marian
  • Nowak, Michał
  • Sędłak, Kamil
Abstract

<jats:p>Adhesive bonding is widely used in modern industry. It has many advantages—the main one being the reduction in production costs. It also has certain limitations. One of the limitations of adhesive bonds is the relatively long bonding time of the joints. The main objective of this research was to determine the possibility of studying the kinetics of adhesive bond formation using a non-destructive ultrasonic method. A research experiment was planned and carried out. Adhesive specimens were prepared, and their quality changes over time were evaluated. In addition, the change in ultrasonic measures during the testing of these bonds was evaluated, as well as the hardness of the adhesive. In this study, the choice of test apparatus was made, in particular ultrasonic probes for the adhesive used and the materials to be bonded. The choice of adhesive was also made, for one in which bonding phenomena occur uniformly throughout the volume. This work examined the changes in the mechanical strength and hardness with time. The tests showed that the greatest changes in mechanical strength occur within the first 24 h after the bond was made. With the mechanical strength reaching 12.6 Mpa after 216 h, the strength in the first 24 h was 10.36 (for bonded steel sheets). For bonded steel discs, the maximum tensile strength was 26.99 Mpa (after 216 h), with a hardness of 22.93 Mpa during the first 24 h. Also, significant changes were observed in the adhesive hardness during the first 24 h. The hardness of the adhesive after 216 h was 70.4 Shore’a on the D scale, while after 24 h it was 69.4 Shore’a on the D scale. Changes in the ultrasonic parameters of the adhesive bond quality were found to occur along with changes in the bond quality.</jats:p>

Topics
  • impedance spectroscopy
  • experiment
  • strength
  • steel
  • hardness
  • ultrasonic
  • tensile strength