People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hai, Nguyen Hong
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Glass-Forming Ability and Magnetic Properties of Al82Fe16Ce2 and Al82Fe14Mn2Ce2 Alloys Prepared by Mechanical Alloying
Abstract
<jats:p>Al82Fe16Ce2 and Al82Fe14Mn2Ce2 amorphous alloys were successfully synthesized by the mechanical alloying technique. The microstructural evolution of the milled powders was thoroughly investigated employing X-ray diffraction (XRD) and scanning electron microscopy (SEM). Additionally, their magnetic properties were quantitatively evaluated by a vibrating sample magnetometer (VSM). A full amorphous structure was obtained for both alloys after milling for 40 h. During the initial milling stage, extending from 5 to 20 h, an fcc solid solution phase was formed, coexisting with the residual Al phase. The partial substitution of 2 atomic percent (at.%) Mn for Fe in Al82Fe16Ce2 did not affect the alloy’s glass-forming ability. The amorphous Al82Fe16Ce2 and Al82Fe14Mn2Ce2 powders exhibited a nearly spherical shape, with diameters ranging from 1 to 3 µm and to 10 µm, respectively. Additionally, both the Al82Fe16Ce2 and Al82Fe14Mn2Ce2 alloys demonstrated characteristics of hard magnetism.</jats:p>