Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Denguir, Lamice A.

  • Google
  • 3
  • 6
  • 7

Laboratoire Bourguignon des Matériaux et Procédés

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Tribological Analysis of Several Coatings under Flood and Cryogenic Cooling Conditions1citations
  • 2020Multi-physical analysis of the electrochemical behaviour of OFHC copper surfaces obtained by orthogonal cutting3citations
  • 2020Multi-physical analysis of the electrochemical behaviour of OFHC copper surfaces obtained by orthogonal cutting3citations

Places of action

Chart of shared publication
Marcon, Bertrand
1 / 20 shared
Zhang, Yutao
1 / 1 shared
Nouveau, Corinne
1 / 78 shared
Martins Do Outeiro, Jose Carlos
1 / 22 shared
Fromentin, Guillaume
2 / 33 shared
Outeiro, Jose C.
1 / 1 shared
Chart of publication period
2023
2020

Co-Authors (by relevance)

  • Marcon, Bertrand
  • Zhang, Yutao
  • Nouveau, Corinne
  • Martins Do Outeiro, Jose Carlos
  • Fromentin, Guillaume
  • Outeiro, Jose C.
OrganizationsLocationPeople

article

Tribological Analysis of Several Coatings under Flood and Cryogenic Cooling Conditions

  • Denguir, Lamice A.
  • Marcon, Bertrand
  • Zhang, Yutao
  • Nouveau, Corinne
Abstract

<jats:p>The contact between the tool and the workpiece/chip in metal cutting is complex, resulting in high local temperatures and stresses, which may cause severe tool wear and failure. Developments in cryogenic-assisted machining have shown an ecological alternative to the classical metal working fluids, besides tool wear reduction during machining difficult-to-cut materials due to the good ability to dissipate the heat generated by this process. The objective of this work is to analyze the tribological conditions and performance of new coatings specially developed for cryogenic-assisted machining in terms of friction coefficient, volume of build-up material (adhesion) to the tool, and tool temperature. The results have shown that the sliding speed and cooling/lubrication strategy are two main factors that affect the friction coefficient and adhesion of Ti–6Al–4V alloy to the pins. These tribological tests should allow us to select the best coating(s) to be used in cutting tools for further tool wear analysis. Moreover, the obtained friction coefficients could be further implemented into metal cutting models to predict the machining outcomes, including the surface integrity of the machined parts and tool wear.</jats:p>

Topics
  • impedance spectroscopy
  • surface