People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pakuła, Daria
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Preparation and Characterization of Composites Based on ABS Modified with Polysiloxane Derivativescitations
- 2024Micro- and Nano-Pollutants from Tires and Car Brakes Generated in the Winter Season in the Poznan City Urban Environmentcitations
- 2024Enhancing the Thermal Resistance of UV-Curable Resin Using (3-Thiopropyl)polysilsesquioxanecitations
- 2023Liquid for Fused Deposition Modeling Technique (L-FDM)—A Revolution in Application Chemicals to 3D Printing Technology: Color and Elementscitations
- 2023Liquid to Fused Deposition Modeling (L-FDM)—A Revolution in Application Chemicals to 3D Printing Technology—Mechanical and Functional Propertiescitations
- 2023Feldspar-Modified Methacrylic Composite for Fabrication of Prosthetic Teethcitations
- 2022The Influence of Organofunctional Substituents of Spherosilicates on the Functional Properties of PLA/TiO2 Composites Used in 3D Printing (FDM/FFF)citations
- 2022Where ppm Quantities of Silsesquioxanes Make a Difference—Silanes and Cage Siloxanes as TiO<inf>2</inf> Dispersants and Stabilizers for Pigmented Epoxy Resinscitations
- 2022Carbonate Lake Sediments in the Plastics Processing-Preliminary Polylactide Composite Case Study: Mechanical and Structural Propertiescitations
- 2022Novel Multifunctional Spherosilicate-Based Coupling Agents for Improved Bond Strength and Quality in Restorative Dentistrycitations
- 2021Why POSS-Type Compounds Should Be Considered Nanomodifiers, Not Nanofillers—A Polypropylene Blends Case Studycitations
- 2019The influence of surface physicochemistry of solid fillers on dispersion in polyurea systems
Places of action
Organizations | Location | People |
---|
article
Liquid for Fused Deposition Modeling Technique (L-FDM)—A Revolution in Application Chemicals to 3D Printing Technology: Color and Elements
Abstract
<jats:p>This article presents a novel 3D printing technique called L-FDM (liquid for fused deposition modeling), which is based on the deposition of molten thermoplastic material. The new method allows for the direct introduction of chemicals and polymer filament modifications during the printing process. In contrast to traditional incremental methods, L-FDM eliminates the need for extra granulating, extrusion, and processing equipment, making it possible to introduce chemical additives to the polymer matrix directly. This opens up exciting possibilities for chemical laboratories to test and experiment with new and known chemicals through 3D printing. The article discusses the technical aspects of L-FDM and its potential applications and provides practical examples of direct filament modifications using the technique. The results of these modifications were verified using a colorimeter, electron microscopy (SEM/EDS), and optical microscopy.</jats:p>