People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Azimiroeen, Ghasem
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Effect of initial grain size on microstructure and mechanical properties of in situ hybrid aluminium nanocomposites fabricated by friction stir processing
Abstract
Friction stir processing (FSP) offers a unique opportunity to tailor the microstructure and improve the mechanical properties due to the combination of extensive strains, high temperatures, and high-strain rates inherent to the process. Reactive friction stir processing was carried out in order to produce in situ Al/(Al13Fe4 + Al2O3) hybrid nanocomposites on wrought/as-annealed (673 K) AA1050 substrate. The active mixture of pre-ball milled Fe2O3 + Al powder was introduced into the stir zone by pre-placing it on the substrate. Microstructural characterisation showed that the Al13Fe4 and Al2O3 formed as the reaction products in a matrix of the dynamically restored aluminium matrix. The aluminium matrix means grain size was found to decrease markedly to 3.4 and 2 μm from ~55 μm and 40–50 μm after FSP using wrought and as-annealed substrates employing electron backscattered diffraction detectors, respectively. In addition, tensile testing results were indicative that the fabricated surface nanocomposite on the as-annealed substrate offered a greater ultimate tensile strength (~160 MPa) and hardness (73 HV) than those (146 MPa, and 60 HV) of the nanocomposite formed on the wrought substrate.