People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Frazier, William E.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Hot Rolling of ZK60 Magnesium Alloy with Isotropic Tensile Properties from Tubing Made by Shear Assisted Processing and Extrusion (ShAPE)
Abstract
<jats:p>In the present work, we utilized Shear Assisted Processing and Extrusion (ShAPE), a solid-phase processing technique, to extrude hollow tubes of ZK60 Mg alloy. Hot rolling was performed on these as-extruded tubes (after slitting them longitudinally) to thickness reductions of 37%, 68%, and 93% to investigate their viability as rolling feedstock material. EBSD analysis showed the formation of twinned grains in the ShAPE processed material and a gradual re-orientation of the basal texture parallel to the extrusion direction with each rolling step. Moreover, an equiaxed grain size of 5.15 ± 3.39 μm was obtained in the ShAPE extruded material, and the microstructure was retained even after 93% rolling reduction. The rolled sheets also showed excellent tensile strengths and no mechanical anisotropy, a critical characteristic for formability. The unique microstructures developed and their excellent mechanical properties, combined with the ease of scalability of the process, make ShAPE a promising alternative to existing methods for producing rolling feedstock material.</jats:p>